
Using UIMA to Structure
an Open Platform for
Textual Entailment

Tae-Gil Noh, Sebastian Padó
Dept. of Computational Linguistics

Heidelberg University

The paper is about

● About EXCITEMENT Open Platform
○ a suite for Textual Entailment
○ and, how UIMA helped us to build the platform.

● Contents of this session
○ Brief introduction to Textual Entailment, and the

EXCITEMENT open platform.
○ UIMA adoption on EXCITEMENT platform.
○ Some open issues.

Textual Entailment (TE)

● A relation between two text fragments.
● Definition

○ A text (T) entails Hypothesis (H), if a typical human
reading of T would infer that H is most likely true.

● Example
○ T: One of them is 1908 Tunguska event in Siberia,

known as the Tunguska meteorite fall.
○ H1: A shooting star fell in Russia in 1908.
○ H2: Tunguska fell to Siberia in 1908.

● Typical human reading of T would say;
○ H1 is true, while H2 is not.

Textual Entailment (TE); relation on
Text (T) and Hypothesis (H)

● TE is a directed relation.
● An example (directed T -> H)

○ T: John bought a Volkswagen Golf.
○ H: Now, John has a car.

■ “Textual Inference”.
● Similar to paraphrase?

○ T: He got a letter of acceptance.
○ H: The acceptance letter has been given to him.
○ Paraphrase can be regarded as a case of

bidirectional entailment. (T -> H & H -> T)
● Recognizing Textual Entailment (RTE)

○ A decision task on a (Text, Hypothesis) pair.
■ ENTAILMENT or NON-ENTAILMENT

Textual Entailment (TE), as Semantic
Processing Engine

● Potential of Textual Entailment (TE)
○ Various NLP applications need semantic processing.
○ But semantic processings are mostly done by

application-dependent manners.
■ (vs. standardized syntactic processings)

○ TE has the potential to offer a uniform, theory-
independent semantic processing.

○ Existing TE engines have been used to build proof-
of-concept systems
■ Question answering, Machine Translation

evaluation, Information visualization, Automatic
summarization, etc.

Textual Entailment Engines

● Many different strategies
○ Tested and developed along RTE workshops.
○ The community produced several good open source

systems.
● Practical problem of Fragmentation

○ No interoperability
■ Modules and resources are often only designed

for a specific system and a specific paradigm.
○ Build-from-scratch

■ When researchers want to build a new approach,
they often need to build from scratch.

■ Many of the components already exist, but not in
a usable form!

Common platform for Textual
Entailment?

● EXCITEMENT open platform
○ A suite of textual inference components.
○ Goal

■ Provide a playground of “pluggable” (reusable)
TE components for the community.

■ Be the common development platform for TE
researchers.
● Like MOSES platform in Machine Translation.

○ Challenges
■ TE systems typically depends on various

linguistic analysis, as well as large knowledge
bases.

■ Direct source of the problem of reusability.

The open platform is a part of
EXCITEMENT project

● EXCITEMENT - EU FP7 project
○ Home page: http://excitement-project.eu/
○ Academic and industrial partners.

● Academic side
○ Bar Ilan university (Tel aviv, BIUTEE system)
○ DFKI (Saarbrücken, TIE system)
○ FBK (Trento, EDITS system)
○ Heidelberg University

● Industrial side
○ NICE (in Israel), OMQ (in Germany), ALMA (in Italy)
○ Use the resulting TE engines of the platform for

customer interaction analysis.
● First version of the platform is just out.

http://excitement-project.eu/

EXCITEMENT Open Platform

● This paper deals UIMA-related architectural
aspects of EOP.

● The requirements of the platform
○ 1) Reusing of existing software

■ Easy integration of existing TE system,
components and resources.

○ 2) Multilinguality
■ Adding a new language should be easy.

○ 3) Component Reusable
■ Each component is self-contained and not tied to

a specific approach.
■ Should be easily replaceable, and reusable.

EXCITEMENT Platform
Architecture Overview

EXCITEMENT Open Platform (EOP)
Architecture

● UIMA adoption on EOP
○ Partial, and Parallel

● Partial
○ UIMA only adopted for the first part of EOP
○ Two groups of common components in EOP

■ LAP (Linguistic analysis pipeline) & CORE
■ Only LAP part adopts UIMA

○ LAP components are naturally mapped to UIMA.
■ All component behaviors as “adding annotations”

○ Many CORE components are not natural to be
treated as annotators.

An example of Core component
behavior

Core Components

● They are defined as Java component
○ Behaviors are defined by a set of Java Interfaces,

and with specific conventions.
○ However, they still use CAS (JCas) as the main data

type that holds annotated data.
● Resource “look-up” components

○ Lexical Resources.
○ Syntactic-level Resources.

● Scoring components (CAS in, score out)
○ Feature Extracting components.
○ (Semantic) Distance calculation components.

● Entailment Decision components
○ EDA (Entailment Decision Algorithm).

EXCITEMENT Platform
Architecture Overview

CAS

UIMA Usage in EXCITEMENT: CAS

● CAS is the central data type that connects
LAP & CORE
○ CAS is “Input” to Entailment Core, and “output”of

Linguistic Analysis Pipelines (LAPs).
○ Things to consider for CAS that holds TE problems

■ CAS holds a pair (t and h fragments), instead of
a document.

■ Multiple text, or multiple hypothesis cases
■ Some annotations connects parts of text and

hypothesis (e.g. alignment annotations)
● Two tasks on CAS adoption

○ 1) A design for T-H pair representation in CAS.
○ 2) Type systems to represent them.

Type system adoption / extension

● Adopted DKPro type system
○ Generic, well-designed type system with language

independence in mind.
○ Granted EOP to use existing AEs already wrapped

by DKPro.
● Then, we added some annotation types that

were missing in DKPro
○ Semantic Role Labels, Alignment types, Predicate

Truth value annotations, etc.
● Defined some types for T-H pair

○ Pairs, expression of entailment decision, TE
metadata, etc.

Wrapping of LAP: UIMA is
transparent to users

● LAP has its own interface methods
○ Wraps UIMA runtime, or any AE running methods
○ Each pipeline support those methods.

● Why wrap UIMA with additional interface?
○ Minimize users learning curve

■ Top level user don’t need to know anything about
UIMA.

■ Support TE specific capabilities.
○ “Parallel” adoption: project participants can

implement LAP without UIMA AE/AAE adoption.
○ Cost of migration: “Translating” existing pipeline

outputs to CAS is easier than break/migrate every
components to AE.

LAP Interface

● All LAP pipelines support a set of common
functionalities (with Java API)
○ generate an annotated T-H, from string T-H pair.
○ process RTE input file, and generate a set of

CASes.
○ annotate a given CAS.

● AE (Analysis Engine) based components
○ We recommend AE implementation for project

members.
○ There is a common implementation that gets list of

AEs, forms a pipeline, and automatically supports
those common functionalities.

In the long term, we hope to get
UIMA AE-based LAP components.

● Parallel adoption is an intermediate solution
○ “CAS only” adoption.
○ We hope this “parallel” adoption finally leads to all

project members to adopt UIMA AE.
● For pluggable LAP components

○ New annotators are expected to have big impacts on
various TE systems.
■ e.g. “Negation annotator”, “Predicate truth value

annotator”
○ Without UIMA AE adoption, the user has to adopt

the whole pipeline, not only the new module.

Currently -

● EOP Version 1.0 released in September 1.
● LAP

○ More than a dozen pipelines for 3 languages.
○ English, German, and Italian.

■ supports various levels of annotations
■ adoption of UIMA enables us to use existing AEs

with low costs.
● CORE

○ Three systems have been migrated: TIE, EDITS,
BIUTEE.

○ Working for English, German and Italian.
○ Various knowledge resources for the three

languages.

Open Issue #1: CAS in non-UIMA
environment

● CAS is the object that holds all “annotated”
data in EXCITEMENT platform.

● Widely used: even in some very complex
data types!
○ Entailment Graph example

● CAS usage & Efficiency
○ UIMA recommends that minimize number of CASes.
○ But it is very easy for the platform users to treat CAS

as “simply a data type that holds annotated data”.
And use it as … just as a class.

○ Lower Efficiency!
○ Best practice needed, with better ways to store them

especially as a part of another object.

Entailment Graph Example

Food is not good.

The food tasted bad.

The food was too
expensive.

Environment in the
train was not good.

Coffee in board-bistro
was horrible.
… …

The sandwich at the
train costed way too
much.
… …

A little more legroom
would be very nice.
…

The seating was not
comfortable.
…

Open Issue #2: Annotation style
“same parse tree in different style”

● Pluggable LAP
○ The goal is to make LAP independent from CORE;

and LAP as replaceable. So if we get a new & better
analyzer (e.g. parser), we can use that.
■ With a trivial re-training of core engine.

● However, some core components are
depending on LAP output
○ Notably, parser and syntactic knowledge.
○ Parsers have “styles”: knowledge components are

affected by parsing output style.

Example: syntactic rule & different
parse style

● Assume that we have one syntactic rule
○ X was bought by Y --entails→ Y have X

● Different parse style example
○ Match would fail!

bought

X was
by

Y

bought

X was Y

nsubjpass
auxpass

prep

pobj

nsubjpass
auxpass

agent

STYLE A STYLE B

Open Issue #2: Annotation style and
dependency

● Dependency between parser - syntactic
knowledge.
○ A parser change will reduce the performance of

knowledge resource, if they have different style.
● How bad is this?

○ Currently under investigation.
○ “Automatic parser style conversion” possible?

■ Automatically learning of conversion rules from
two parsed corpora, etc.

○ Transform might be easier (or cheaper) than “re-
generate” all knowledge resource.

○ “Self-contained” syntactic knowledge seems to be
hard.

Conclusion

● UIMA adoption enabled the project to have a
good linguistic analysis pipeline.
○ Multilingual, metadata-rich linguistic analysis

pipeline.
● Existing work of the community helped us to

build various pipelines with ease.
○ DKPro type systems and its AEs.

● In the project, CAS is the standard data
representation for annotated data
○ CAS can be passed and used successfully in non-

UIMA environment.

Thanks!

● EXCITEMENT open platform 1.0
○ You can try it by visiting the following URL.

 http://hltfbk.github.io/Excitement-Open-Platform/
● NOTE: Still in a testing phase.

http://hltfbk.github.io/Excitement-Open-Platform/

