UIMA Tutorial and Developers' Guides

Written and maintained by the Apache UIMA Development Community

Version 2.3.0-incubating

Copyright © 2004, 2006 International Business Machines Corporation
Copyright © 2006, 2009 The Apache Software Foundation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing incubation
at the Apache Software Foundation (ASF). Incubation is required of all newly accepted
projects until a further review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection of the completeness
or stability of the code, it does indicate that the project has yet to be fully endorsed by the
ASF.

License and Disclaimer. The ASF licenses this documentation to you under the

Apache License, Version 2.0 (the "License"); you may not use this documentation except

in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and
its contents are distributed under the License on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

Trademarks. All terms mentioned in the text that are known to be trademarks or
service marks have been appropriately capitalized. Use of such terms in this book should
not be regarded as affecting the validity of the the trademark or service mark.

Published December, 2009

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. Annotator & AE Developer's Guidec..occeiiiiiiiiiiiii 1
1.1. Getting Startedcccoiiiiiiiiii 2
1.1.1. Defining TYPeSooviviiiiiiiiiiiiiiiie e 3
1.1.2. Generating Java Source Files for CAS Typesccccoevvriviiiiiiiiiiiinnne. 5
1.1.3. Developing Your Annotator Codecoccuiiiiiiiiiiiiiiiiiiiiii 6
1.1.4. Creating the XML Descriptorcccccooviiiiiiiiiiiiiiiiiiiiicieccec 9
1.1.5. Testing Your AnNotatorcccueiiiiiiiiiiiiiiiiic 12

1.2. Configuration and LOgGINgcccccciiiiiiiiiiiiiiiiiiiiiiiiccic s 14
1.2.1. Configuration Parameterscccccoeviiiiiiiiiiiiiiiiiiieiiiieeeeee e 14
1.2.2. LOZGING oooviiiiiiiiiiiiiiiiii e 18

1.3. Building Aggregate Analysis Enginesccccoccciiiiiiiiiiiiii 21
1.3.1. Combining ANNOtatorsccccceiiiiiiiiiiiiiiiiiii 21
1.3.2. AAEs can also contain CAS CONSUMETScccevvuiiiiiiiieiiiiieiiiceeieens 25
1.3.3. Reading the Results of Previous Annotatorsccccoeeviiiiiiiiininnnn. 26

1.4. Other examplesccccciiiiiiiiiiiiiii 27
1.5. Additional TOPICSceviiiiiiiiiiiiiiiiiiiii 28
1.5.1. Annotator Methodscccooviiiiiiiiiiii 28
1.5.2. Reporting errors from Annotatorsccccooeveiiiiiiiiiiiiiiciiic, 30
1.5.3. Throwing Exceptions from Annotatorsccccceeviiiiiiiiiiiiiniiicnne, 30
1.5.4. Accessing External Resource Filesccccooiiiiii, 33
1.5.5. Result Specificationscccccueiiiiiiiiiiiiiiiiiii 40
1.5.6. Class path setup when using JCasccccoocviiiiiiiiiiiiiiii, 42
1.5.7. Using the Shell Scriptscccccvviiiiiiiiiiiiiiiii 43

1.6. Common Pitfallsccocciiiiiiiiiiiiii 44
1.7. UIMA Objects in Eclipse Debuggerccccceeiiiiiiiiiiiiiiiiiiiiiiics 44
1.8. Analysis Engine XML Descriptorccccoiiiiiiiiiiiiiiiiiiiiiieecs 45
1.8.1. Header and Annotator Class Identificationcccocciiiiiinne. 46
1.8.2. Simple Metadata Attributesccccciiiiiiiiiiii 46
1.8.3. Type System Definitioncccooeiiiiiiiiiiiiiiiiii 46
1.8.4. Capabilitiesccccciiiiiiiiiiiiii 47
1.8.5. Configuration Parameters (Optional)cccccooviiiiiiiiiiiii. 47

2. CPE Developer's GUIdEcceoiiiiiiiiiiiiiiiiiiiiiiiic e 51
2.1. CPE CONCEPLS ..oooiiiiiiiiiiiiiceiec e 52
2.2. CPE Configurator and CAS VIEWeTcccceiiiiiiiiiiiiiiicicccecce 53
2.2.1. Using the CPE Configuratorcccccooviiiiiiiiiiiiiiiiicccicccic 53
2.2.2. Running the CPE Configurator from Eclipsec..ccccciiiiiiiiinnn. 57

2.3. Running a CPE from Your Own Java Applicationc..ccceceeiiiiiiiiiiinne. 58
2.3.1. Using LiStenersccooooiiiiiiiiiiiiiiiiiiiiiiceeeiie e 59

2.4. Developing Collection Processing Componentscccceeeiiviiiiiiiiiiieeennne. 59
2.4.1. Developing Collection Readersccccoeuiiiiiiiiiiiiniiiiin, 59
2.4.2. Developing CAS Initializersccccccoovviiiiiiiiiiiiii, 66
2.4.3. Developing CAS CONSUMETSc.c..cooiiiuiiiiiiiiiiiieiiiiece e 66

2.5. Deploying @ CPEcooiiiiiiiiiiiiiiic i 69

UIMA Tutorial and Developers' Guides iii

UIMA Tutorial and Developers' Guides

2.5.1. Deploying Managed CAS Processorsccccoevuviiiiiiiiiiiiiiiiiciiiinenn. 71
2.5.2. Deploying Non-managed CAS Processorscccccuvvriiiiiiiiiiiiiincinnns 72
2.5.3. Deploying Integrated CAS Processorsccccoceuviiiiiiiiiiiiiiiinciinnnnn. 74

2.6. Collection Processing Examplescccccocviiiiiiiiiiiiiiiiiiiicccciececen 75
3. Application Developer's GUidecccoiiiiiiiiiiiiiiiiiicc 77
3.1. The UIMAFramework Classcccocueiiiiiiiiiiiiiiiiiiiiciicececccieccece 77
3.2. Using Analysis ENGINESccccueiiiiiiiiiiiiiiiiicceccc 78
3.2.1. Instantiating an Analysis Enginec.cccccccoviiiiiiii 78
3.2.2. Analyzing Text DOCUMENtSc..cocvviiiiiiiiiiiiiii e 79
3.2.3. Analyzing Non-Text Artifactscccccoociiiiiiii, 80
3.2.4. Accessing Analysis Resultscccccciiiiiiiiiiiiii, 80
3.2.5. Multi-threaded Applicationscccccceivviimiiiiiiiiiiii 81
3.2.6. Multiple AEs & Creating Shared CASescccccviiiiiiiiiniiiiiiin, 83
3.2.7. Saving CASes to file systemsccceeuviiiiiiiiiiiiiii 84

3.3. Using Collection Processing Enginesccccccovviiiiiiiiiiiiiiii, 84
3.3.1. Running a CPE from a Descriptorccccccviiiiiiiiiiiiiiiiiiin, 85
3.3.2. Configuring a CPE Descriptor Programmaticallyccccccccoeein 85

3.4. Setting Configuration Parametersccccocoiiiiiiiiiiiiii 87
3.5. Integrating Text Analysis and Searchccccccciiiiiiiii 88
3.5.1. Building an IndexXccccoiiiiiiiiiiiii, 89
3.5.2. Semantic Search Query Toolcc.ccoooviiiiiiiiiiii 92

3.6. Working with Remote Servicesccccooviiiiiiiiiiiiiiiii 94
3.6.1. Deploying as SOAP Servicecccoocuriiiiiiiiiiiiiiiiiiiiciicecece e 94
3.6.2. Deploying as a VInci Serviceccccoovviiiiiiiiiiiiiiiiiiiicccieccciccee 96
3.6.3. Calling @ UIMA Serviceccceiiiuiiiiiiiiiiiiiiiiiiciiiciecccc e 98
3.6.4. Restrictions on remotely deployed servicesccccoecuvriiiiiiiiiinnnnnn. 99
3.6.5. The Vinci Naming Services (VINS)ccccvvviiiiiiiiiiiis 100
3.6.6. Configuring Timeout Settingscccccviiiiiiiiiiiiiiiiiiiii e 103

3.7. Increasing performance using parallelismc...cccoooiiiiiii 105
3.8. Monitoring AE Performance using JMXccccociiiiiiiiiiiiiii, 106
3.9. Performance Tuning Optionsccccuviiiiiiiiiiiiiiiiii e, 108
4. Flow Controller Developer's Guidecoocviiiiiiiiiiiiiiiiiii 111
4.1. Developing the Flow Controller Codeccccooviiiiiiiiiiiiiii, 111
4.1.1. Flow Controller Interface Overviewcccccooviviiiiiiiiiiiiiicin, 111
4.1.2. Example Codeccccciiiiiiiiiiiiiiiiiii 112

4.2. Creating the Flow Controller Descriptorcccccoovviiiiiiiiiiiiiiiiiciiccen, 114
4.3. Adding Flow Controller to an Aggregateccccceovuiiiiiiiiiiiiiiiiciic, 116
4.4. Adding Flow Controller to CPEc..cocciiiiiiiiiiiiii, 117
4.5. Using Flow Controllers with CAS Multiplierscc.ccocceviiiiiiiiiiiiinnn. 118
4.6. Continuing the Flow When Exceptions Occurcccccovviiiviiiiiiiiiiiiininnn. 118
5. Annotations, ATtifacts & SOLAScivuniiiiiiiieiie e 121
5.1. TerminolOgYcceeriiiiiiiiiiiiiiii i 121
5.1 Artifact ...oooooiii 121
5.1.2. Subject of Analysis — Sofacccceeviiiiiiiiiiiiiiii 121

5.2. Formats of Sofa Datacccooviiiiiii 121

iv

UIMA Tutorial and Developers' Guides UIMA Version 2.3.0

UIMA Tutorial and Developers' Guides

5.3. Setting and Accessing Sofa Datacccccooviiiiiiiiiiii 122
5.3.1. Setting Sofa Datac.cccoovviiiiiiiiiiiiiii 122
5.3.2. Accessing Sofa Dataccccccooiiiiiiiiiiiiiiii 122
5.3.3. Accessing Sofa Data using a Java Streamccccovviiiiiiininn. 123

5.4. The Sofa Feature Structurec.cccociiiiiiiiiiiiiiiiii 123

5.5. ANNOtatiONSccuvviiiiiiiiiii 124
5.5.1. Built-in Annotation typescccccociiiiiiiiiiiiiiii 124
5.5.2. Annotations have an associated Sofacccccoiviiiiiiii, 124

5.6. AnnotationBaseccciiiiiii 124

6. Multiple CAS VIEWSceiiiiiiiiiiiiiiiiccciic e 127

6.1. CAS Views and Sofasccccceiiiiiiiiiiiiiiiiiii 127
6.1.1. Naming CAS Views and S0fascccoccuviiiiiiiiiiiiiiiiieiiiiiccieeeee 127
6.1.2. Multi/Single View parts in Applicationsccccccoeeiiiiiiiiiiiiiiiinns 128

6.2. Multi-View COomponentsccooouiiiiiiiiiiiiiiiiiiciiice e 128
6.2.1. Deciding: Multi-Viewccccciiiiiiiiiii 128
6.2.2. Multi-View: additional capabilitiesc..cccecviiiiiiiiin, 128
6.2.3. Component XML metadataccocueiiiiiiiiiiiii 129

6.3. Sofa Capabilities & APIs fOr APPScoovviiiiiiiiiiiiiiiiiiiii e 129

6.4. Sofa Name Mappingcccccviiiiiiiiiiiiiiiiiiiiii i 129
6.4.1. Name Mapping in an Aggregate Descriptorcc.ccccooviiiiiiiiinn, 130
6.4.2. Name Mapping in a CPE Descriptorccccciiiiiiiiiiiiiiii 131
6.4.3. CAS View for Single-View Partsccccooiiiiiiiiiiiii, 132
6.4.4. Name Mapping in a UIMA Applicationc..ccoocveiviiiiiiiiniinnnn. 133
6.4.5. Name Mapping for Remote Servicescccccoocvriiiiiiiiiiiiiininnnne, 133

6.5. JCas extensions for Multiple VIeWScccccoiiiiiiiiiiiiiiii, 134

6.6. Sample Multi-View Applicationcccceiiiiiiiiiiiiiii 134
6.6.1. Annotator Descriptorcoooo 134
6.6.2. Application SetUPcccovviiiiiiiiiiiiiiiiii 135
6.6.3. Annotator Processingcccccccovvviiiiiiiiiiiiniiiiii 135
6.6.4. Accessing the results of analysiscccccceiiiiiiiiiii 136

6.7. Views API SUMMATYccoooiuiiiiiiiiiiiiii i 137

6.8. Sofa Incompatibilities: V1 and V2c..cccoiiiiiiii 137

7. CAS MUItPLIErcooiiiiiiiiiiiiiiii 139

7.1. Developing the CAS Multiplier Codecccccooviiiiiiiiiiiiiiiii, 139
7.1.1. CAS Multiplier Interface OVerviewccccoeciiiiiiiiiiiiiiiniiinnn, 139
7.1.2. Getting an empty CAS Instancecoccvveiiiiiiiiiiiiii 140
7.1.3. Example Codecocouiiiiiiiiiiiiiiiiiiic i 141

7.2. CAS Multiplier Descriptorcc.ccooiiiiiiiiiiiiiiiiciiiccciceccc e 144

7.3. Using CAS Multipliers in Aggregatescccceivviiiiiiiiiiiiiiiicccicce 145
7.3.1. Aggregate: Adding the CAS Multipliercc.ccocoiiiiiiiinin, 145
7.3.2. CAS Multipliers and Flow Controlccccociiiiiiiiiiiiiiiin, 145
7.3.3. Aggregate CAS Multipliersc...cccooiiiiiiii 147

7.4. CAS Multipliers in CPE'Scccccoviiiiiiiiiiiiiiniiiiiii e, 147

7.5. Applications: Calling CAS Multiplierscccciviiiiiiiiiiiniiiiiiiie, 148
7.5.1. 0Output CASESoooiiiiiiiiiiiiiiiiicii 148

UIMA Version 2.3.0 UIMA Tutorial and Developers' Guides v

UIMA Tutorial and Developers' Guides

7.5.2. CAS Multipliers with other AEsccccciiiiii 149

7.6. Merging with CAS Multipliersccccoooiiiiiiiiiiii, 150
7.6.1. CAS Merging OVeIVIEWccccccciviiiiiiiiiiiiiiiiiiiiiiiiice e, 150

7.6.2. Example CAS METZETcccuviiiiiiiiiiiiiiiiii it 151

7.6.3. SimpleTextMerger in an Aggregatecccoovviiiiiiiiiicniiicecec, 153

8. XMI & EMF ..ot 155
8.1, OVEIVIEW ..ottt 155

8.2. Converting an Ecore Model to or from a UIMA Type System 155

8.3. Using XMI CAS Serializationcccccuiiiiiiiiiiiiiiiiiiiiicc 156
8.3.1. Character Encoding Issues with XML Serializationcccocceeeee. 157

vi

UIMA Tutorial and Developers' Guides UIMA Version 2.3.0

Chapter 1. Annotator and Analysis Engine
Developer's Guide

This chapter describes how to develop UIMA type systems, Annotators and Analysis Engines
using the UIMA SDK. It is helpful to read the UIMA Conceptual Overview chapter for a
review on these concepts.

An Analysis Engine (AE) is a program that analyzes artifacts (e.g. documents) and infers
information from them.

Analysis Engines are constructed from building blocks called Annotators. An annotator

is a component that contains analysis logic. Annotators analyze an artifact (for example,

a text document) and create additional data (metadata) about that artifact. It is a goal of
UIMA that annotators need not be concerned with anything other than their analysis logic
— for example the details of their deployment or their interaction with other annotators.

An Analysis Engine (AE) may contain a single annotator (this is referred to as a Primitive
AE), or it may be a composition of others and therefore contain multiple annotators (this
is referred to as an Aggregate AE). Primitive and aggregate AEs implement the same
interface and can be used interchangeably by applications.

Annotators produce their analysis results in the form of typed Feature Structures, which
are simply data structures that have a type and a set of (attribute, value) pairs. An
annotation is a particular type of Feature Structure that is attached to a region of the
artifact being analyzed (a span of text in a document, for example).

For example, an annotator may produce an Annotation over the span of text Pr esi dent
Bush, where the type of the Annotation is Per son and the attribute f ul | Nane has the
value George W Bush, and its position in the artifact is character position 12 through
character position 26.

It is also possible for annotators to record information associated with the entire
document rather than a particular span (these are considered Feature Structures but not
Annotations).

All feature structures, including annotations, are represented in the UIMA Common
Analysis Structure(CAS). The CAS is the central data structure through which all UIMA
components communicate. Included with the UIMA SDK is an easy-to-use, native Java
interface to the CAS called the JCas. The JCas represents each feature structure as a Java
object; the example feature structure from the previous paragraph would be an instance of
a Java class Person with getFullName() and setFullName() methods. Though the examples
in this guide all use the JCas, it is also possible to directly access the underlying CAS
system; for more information see Chapter 4, CAS Reference in UIMA References .

The remainder of this chapter will refer to the analysis of text documents and the creation
of annotations that are attached to spans of text in those documents. Keep in mind that the
CAS can represent arbitrary types of feature structures, and feature structures can refer to

Annotator & AE Developer's Guide 1

../references/references.pdf#ugr.ref.cas

Getting Started

other feature structures. For example, you can use the CAS to represent a parse tree for a
document. Also, the artifact that you are analyzing need not be a text document.

This guide is organized as follows:

* Section 1.1, “Getting Started” [2] is a tutorial with step-by-step instructions for
how to develop and test a simple UIMA annotator.

* Section 1.2, “Configuration and Logging” [14] discusses how to make your
UIMA annotator configurable, and how it can write messages to the UIMA log file.

* Section 1.3, “Building Aggregate Analysis Engines” [21] describes how
annotators can be combined into aggregate analysis engines. It also describes how
one annotator can make use of the analysis results produced by an annotator that
has run previously.

* Section 1.4, “Other examples” [27] describes several other examples you may
find interesting, including
¢ SimpleTokenAndSentenceAnnotator — a simple tokenizer and sentence
annotator.
® PersonTitleDBWriterCasConsumer — a sample CAS Consumer which
populates a relational database with some annotations. It uses JDBC and in
this example, hooks up with the Open Source Apache Derby database.

* Section 1.5, “Additional Topics” [28] describes additional features of the UIMA
SDK that may help you in building your own annotators and analysis engines.

* Section 1.6, “Common Pitfalls” [44] contains some useful guidelines to help
you ensure that your annotators will work correctly in any UIMA application.

This guide does not discuss how to build UIMA Applications, which are programs that
use Analysis Engines, along with other components, e.g. a search engine, document
store, and user interface, to deliver a complete package of functionality to an end-user.
For information on application development, see Chapter 3: “Application Developer's
Guide” [77] .

1.1. Getting Started

This section is a step-by-step tutorial that will get you started developing UIMA
annotators. All of the files referred to by the examples in this chapter are in the exanpl es
directory of the UIMA SDK. This directory is designed to be imported into your Eclipse
workspace; see Section 3.2, “Setting up Eclipse to view Example Code” in UIMA Overview
& SDK Setup for instructions on how to do this. See Section 3.4, “Attaching UIMA
Javadocs” in UIMA Overview & SDK Setup for how to attach the UIMA Javadocs to the

jar files. Also you may wish to refer to the UIMA SDK Javadocs located in the docs/api1
directory.

Annotator & AE Developer's Guide UIMA Version 2.3.0

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.linking_uima_javadocs
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.linking_uima_javadocs
file:../../api/index.html
file:../../api/index.html

Defining Types

Note: In Eclipse 3.1, if you highlight a UIMA class or method defined in the
UIMA SDK Javadocs, you can conveniently have Eclipse open the corresponding
Javadoc for that class or method in a browser, by pressing Shift + F2.

Note: If you downloaded the source distribution for UIMA, you can attach that

as well to the library Jar files; for information on how to do this, see Chapter 1,
Javadocs in UIMA References.

The example annotator that we are going to walk through will detect room numbers
for rooms where the room numbering scheme follows some simple conventions. In
our example, there are two kinds of patterns we want to find; here are some examples,
together with their corresponding regular expression patterns:

Yorktown patterns:
20-001, 31-206, 04-123(Regular Expression Pattern: ##-[0-2]##)

Hawthorne patterns:
GN-K35, 15-L07, 4N-B21 (Regular Expression Pattern: [G1-4][NS]-[A-Z]##)

There are several steps to develop and test a simple UIMA annotator.
1. Define the CAS types that the annotator will use.
2. Generate the Java classes for these types.
3. Write the actual annotator Java code.
4. Create the Analysis Engine descriptor.
5. Test the annotator.

These steps are discussed in the next sections.

1.1.1. Defining Types

The first step in developing an annotator is to define the CAS Feature Structure types that
it creates. This is done in an XML file called a Type System Descriptor. UIMA defines basic
primitive types such as Boolean, Byte, Short, Integer, Long, Float, and Double, as well as
Arrays of these primitive types. UIMA also defines the built-in types TOP, which is the
root of the type system, analogous to Object in Java; FSAr r ay, which is an array of Feature
Structures (i.e. an array of instances of TOP); and Annot at i on, which we will discuss in
more detail in this section.

UIMA includes an Eclipse plug-in that will help you edit Type System Descriptors, so if
you are using Eclipse you will not need to worry about the details of the XML syntax. See
Chapter 3, Setting up the Eclipse IDE to work with UIMA in UIMA Ouverview & SDK Setup for
instructions on setting up Eclipse and installing the plugin.

The Type System Descriptor for our annotator is located in the file descri pt or s/
tutorial/exl/ Tutorial TypeSystem xm . (This and all other examples are located in
the exanpl es directory of the installation of the UIMA SDK, which can be imported into

UIMA Version 2.3.0 Annotator & AE Developer's Guide 3

../references/references.pdf#ugr.ref.javadocs
../references/references.pdf#ugr.ref.javadocs
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup

Defining Types

an Eclipse project for your convenience, as described in Section 3.2, “Setting up Eclipse to
view Example Code” in UIMA Overview & SDK Setup.)

In Eclipse, expand the ui maj - exanpl es project in the Package Explorer view, and browse
to the file descri ptors/tutorial / ex1/ Tutori al TypeSyst em xni . Right-click on the file

in the navigator and select Open With — Component Descriptor Editor. Once the editor
opens, click on the “Type System” tab at the bottom of the editor window. You should see
a view such as the following:

B TutoriaMypeSystem.xml 52 = |
TutorialTypeSystem. xml

Type System Definition

+ Types (or Classes) « Imported Type Systems
The following types (dasses) are defined in this analysis engine descriptor. The following type systems are induded as
The grayed out items are imported or merged from other descriptors, and cannot be edited here. {To part of this ane.
edit them, edit their source files),

Type Mame or Feature Name SuperType or Range Element Type

= i i i ; ki Type Set DataPath

org.apache.uima. tutorial.RoomMumber uima. tcas. Annotation
building uima. cas, String kind | Lacation/Name

Overview | Type System Source

Our annotator will need only one type — or g. apache. ui ma. tut ori al . RoomNunber . (We
use the same namespace conventions as are used for Java classes.) Just as in Java, types
have supertypes. The supertype is listed in the second column of the left table. In this case
our RoomNumber annotation extends from the built-in type ui ma. t cas. Annot at i on.

Descriptions can be included with types and features. In this example, there is a
description associated with the bui | di ng feature. To see it, hover the mouse over the
feature.

The bottom tab labeled “Source” will show you the XML source file associated with this
descriptor.

The built-in Annotation type declares three fields (called Features in CAS terminology).
The features begi n and end store the character offsets of the span of text to which the
annotation refers. The feature sof a (Subject of Analysis) indicates which document
the begin and end offsets point into. The sof a feature can be ignored for now since we
assume in this tutorial that the CAS contains only one subject of analysis (document).

Our RoomNumber type will inherit these three features from ui na. t cas. Annot ati on, its
supertype; they are not visible in this view because inherited features are not shown. One
additional feature, bui | di ng, is declared. It takes a String as its value. Instead of String,

Annotator & AE Developer's Guide UIMA Version 2.3.0

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code

Generating Java Source Files for CAS Types

we could have declared the range-type of our feature to be any other CAS type (defined or
built-in).

If you are not using Eclipse, if you need to edit the type system, do so using any XML or
text editor, directly. The following is the actual XML representation of the Type System
displayed above in the editor:

<?xm version="1.0" encodi ng="UTF-8" ?>
<t ypeSyst enDescri pti on xm ns="http://ui ma. apache. or g/ resourceSpeci fier">
<nanme>Tut ori al TypeSyst enx/ nanme>
<descri pti on>Type System Definition for the tutorial exanples -
as of Exercise 1</description>
<vendor >Apache Software Foundati on</vendor>
<ver si on>1. 0</ ver si on>
<types>
<t ypeDescri pti on>
<nane>or ¢g. apache. ui ma. t ut ori al . RoonNunber </ nane>
<descri pti on></ descri pti on>
<supert ypeNanme>ui ma. t cas. Annot at i on</ supert ypeNane>
<f eat ures>
<f eat ureDescri pti on>
<name>bui | di ng</ nanme>
<descri ption>Bui | di ng containing this roonx/description>
<rangeTypeNanme>ui ma. cas. Stri ng</rangeTypeNane>
</ featureDescription>
</ f eatures>
</typeDescri ption>
</types>
</typeSyst enDescri pti on>

1.1.2. Generating Java Source Files for CAS Types

When you save a descriptor that you have modified, the Component Descriptor Editor
will automatically generate Java classes corresponding to the types that are defined in
that descriptor (unless this has been disabled), using a utility called JCasGen. These Java
classes will have the same name (including package) as the CAS types, and will have get
and set methods for each of the features that you have defined.

This feature is enabled/disabled using the UIMA menu pulldown (or the Eclipse

Preferences — UIMA). If automatic running of JCasGen is not happening, please make
sure the option is checked:
« Java - RoomMumberAnnotator xml - Eclipse SDK

Fie Edt MNavigate Ssach Project Bun UIMA | Window Help
Run JCasGen T
Settings b Auto generae JCAS source java files when changing types
v Display fully qualified type names

The Java class for the example org.apache.uima.tutorial. RoomNumber type can be found
in src/ or g/ apache/ ui ma/ t ut ori al / RoomNunber . j ava . You will see how to use these
generated classes in the next section.

UIMA Version 2.3.0 Annotator & AE Developer's Guide 5

Developing Your Annotator Code

If you are not using the Component Descriptor Editor, you will need to generate these
Java classes by using the [CasGen tool. JCasGen reads a Type System Descriptor XML file
and generates the corresponding Java classes that you can then use in your annotator
code. To launch JCasGen, run the jcasgen shell script located in the / bi n directory of the
UIMA SDK installation. This should launch a GUI that looks something like this:

o asten BEx

Fiz Halp

Ei‘:l Unstructured nformation Management Archileciure

|
m. An dpache fewbaier Prapest

Wekoms bo the X asG=n bool, You can desg corners B resize.
}.‘ o apaches-uima) examples) descriptors) tutoriallexl) BoopNunber Annotator . xml
Input Fle: Eriwnis

O cemp
Dukput Dirpcioey: Briwasa

Use the “Browse” buttons to select your input file (Tutorial TypeSystem.xml) and output
directory (the root of the source tree into which you want the generated files placed). Then
click the “Go” button. If the Type System Descriptor has no errors, new Java source files
will be generated under the specified output directory.

There are some additional options to choose from when running JCasGen; please refer to
the Chapter 7, JCasGen User’s Guide in UIMA Tools Guide and Reference for details.

1.1.3.

Developing Your Annotator Code

Annotator implementations all implement a standard interface (AnalysisComponent),
having several methods, the most important of which are:

einitialize,

® process, and

e destroy.

initializeiscalled by the framework once when it first creates an instance of the
annotator class. pr ocess is called once per item being processed. dest r oy may be called
by the application when it is done using your annotator. There is a default implementation
of this interface for annotators using the JCas, called JCasAnnotator_ImplBase, which has
implementations of all required methods except for the process method.

Our annotator class extends the JCasAnnotator_ImplBase; most annotators that use the
JCas will extend from this class, so they only have to implement the process method.
This class is not restricted to handling just text; see Chapter 5, Annotations, Artifacts, and
Sofas [121].

Annotator & AE Developer's Guide UIMA Version 2.3.0

../tools/tools.pdf#ugr.tools.jcasgen

Developing Your Annotator Code

Annotators are not required to extend from the JCasAnnotator_ImplBase class; they may
instead directly implement the AnalysisComponent interface, and provide all method
implementations themselves. ? This allows you to have your annotator inherit from
some other superclass if necessary. If you would like to do this, see the Javadocs for
JCasAnnotator for descriptions of the methods you must implement.

Annotator classes need to be public, cannot be declared abstract, and must have public, 0-
argument constructors, so that they can be instantiated by the framework. 3,

The class definition for our RoomNumberAnnotator implements the process method, and
is shown here. You can find the source for this in the ui ngj - exanpl es/ src/ or g/ apache/
ui ma/ tutorial / exl/ RoomNunber Annot at or. j ava .

Note: In Edlipse, in the “Package Explorer” view, this will appear by

default in the project ui maj - exanpl es, in the folder sr ¢, in the package

org. apache. uima. tutori al . ex1.
In Eclipse, open the RoomNumberAnnotator.java in the uimaj-examples project, under the
src directory.

package org. apache. uima.tutorial.exl;

i mport java.util.regex. Mat cher;
i mport java.util.regex. Pattern;

i mport org.apache. ui ma. anal ysi s_conponent . JCasAnnot at or _| npl Base;
i mport org. apache. ui ma. j cas. JCas;
i mport org.apache. ui na. tutori al . RoonNunber ;

/**
* Exanpl e annotator that detects room nunbers using
* Java 1.4 regul ar expressions.
*/
public class RoomNunmber Annot at or ext ends JCasAnnot at or _I npl Base {
private Pattern myorktownPattern =
Pattern. conpil e("\\b[0-4]\\d-[0-2]\\d\\d\\b");

private Pattern nmHawt hornePattern =
Pattern. conpil e("\\b[GL-4] [NS] -[A-Z]\\d\\d\\b");

public void process(JCas aJCas) {
/| Discussed Later
}
}

*Note that AnalysisComponent is not specific to JCAS. There is a method getRequiredCasInterface() which the user would have
to implement to return JCas. cl ass. Then in the pr ocess(Abst ract Cas cas) method, they would need to typecast
cas to type JCas.

3 Although Java classes in which you do not define any constructor will, by default, have a 0-argument constructor that doesn't

do anything, a class in which you have defined at least one constructor does not get a default 0-argument constructor.

UIMA Version 2.3.0 Annotator & AE Developer's Guide 7

Developing Your Annotator Code

The two Java class fields, mYorktownPattern and mHawthornePattern, hold regular
expressions that will be used in the process method. Note that these two fields are part of
the Java implementation of the annotator code, and not a part of the CAS type system. We
are using the regular expression facility that is built into Java 1.4. It is not critical that you
know the details of how this works, but if you are curious the details can be found in the
Java API docs for the java.util.regex package.

The only method that we are required to implement is pr ocess. This method is typically
called once for each document that is being analyzed. This method takes one argument,
which is a JCas instance; this holds the document to be analyzed and all of the analysis
results. *

public void process(JCas aJCas) {
/1 get docunent text
String docText = aJCas. get Docunment Text () ;
/| search for Yorktown room nunbers
Mat cher mat cher = nYor kt ownPat t er n. mat cher (docText) ;
int pos = 0;
whil e (matcher.find(pos)) {
/1 found one - create annotation
RoomN\unmber annot ati on = new RoomNunber (aJCas) ;
annot ati on. set Begi n(mat cher.start());
annot ati on. set End(mat cher. end());
annot at i on. set Bui | di ng(" Yor kt own") ;
annot at i on. addTol ndexes() ;
pos = mat cher.end();
}
/'l search for Hawt horne room nunbers
mat cher = mHawt hor nePat t er n. mat cher (docText) ;
pos = O;
whil e (matcher. find(pos)) {
/1 found one - create annotation
RoomNunber annot ati on = new RoomNunber (aJCas) ;
annot ati on. set Begi n(mat cher.start());
annot ati on. set End(mat cher. end());
annot at i on. set Bui | di ng(" Hawt hor ne") ;
annot at i on. addTol ndexes() ;
pos = matcher. end();

The Matcher class is part of the java.util.regex package and is used to find the room
numbers in the document text. When we find one, recording the annotation is as simple as
creating a new Java object and calling some set methods:

*Version 1 of UIMA specified an additional parameter, the ResultSpecification. This provides a specification of which types and
features are desired to be computed and "output” from this annotator. Its use is optional; many annotators ignore it.

This parameter has been replaced by specific set/getResultSpecification() methods, which allow the annotator to receive a signal
(a method call) when the result specification changes.

8 Annotator & AE Developer's Guide UIMA Version 2.3.0

Creating the XML Descriptor

RoomN\unmber annot ati on = new RoomNunber (aJCas) ;
annot ati on. set Begi n(mat cher.start());

annot at i on. set End(mat cher . end());

annot at i on. set Bui | di ng(" Yor kt own") ;

The RoomNunber class was generated from the type system description by the Component
Descriptor Editor or the JCasGen tool, as discussed in the previous section.

Finally, we call annot at i on. addTol ndexes() to add the new annotation to the indexes
maintained in the CAS. By default, the CAS implementation used for analysis of text
documents keeps an index of all annotations in their order from beginning to end of
the document. Subsequent annotators or applications use the indexes to iterate over the
annotations.

Note: 1t you don't add the instance to the indexes, it cannot be retrieved by
down-stream annotators, using the indexes.

Note: You can also call addTol ndex es() on Feature Structures that are not
subtypes of ui ma. t cas. Annot at i on, but these will not be sorted in any particular
way. If you want to specify a sort order, you can define your own custom indexes
in the CAS: see Chapter 4, CAS Reference in UIMA References and Section 2.4.1.7,
“Index Definition” in UIMA References for details.

We're almost ready to test the RoomNumberAnnotator. There is just one more step
remaining.

1.1.4. Creating the XML Descriptor

The UIMA architecture requires that descriptive information about an annotator be
represented in an XML file and provided along with the annotator class file(s) to the
UIMA framework at run time. This XML file is called an Analysis Engine Descriptor. The
descriptor includes:

¢ Name, description, version, and vendor

* The annotator's inputs and outputs, defined in terms of the types in a Type System
Descriptor

* Declaration of the configuration parameters that the annotator accepts

The Component Descriptor Editor plugin, which we previously used to edit the Type System
descriptor, can also be used to edit Analysis Engine Descriptors.

A descriptor for our RoomNumberAnnotator is provided with the UIMA distribution
under the name descri pt ors/tutori al / exl/ RoomNunber Annot at or. xm . To edit it

in Eclipse, right-click on that file in the navigator and select Open With — Component
Descriptor Editor.

UIMA Version 2.3.0 Annotator & AE Developer's Guide 9

../references/references.pdf#ugr.ref.cas
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.index
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.index

Creating the XML Descriptor

Tlp In Eclipse, you can double click on the tab at the top of the Component
Descriptor Editor's window identifying the currently selected editor, and the
window will “Maximize”. Double click it again to restore the original size.

If you are not using Eclipse, you will need to edit Analysis Engine descriptors manually.
See Section 1.8, “Analysis Engine XML Descriptor” [45] for an introduction to the
Analysis Engine descriptor XML syntax. The remainder of this section assumes you are
using the Component Descriptor Editor plug-in to edit the Analysis Engine descriptor.

The Component Descriptor Editor consists of several tabbed pages; we will only need
to use a few of them here. For more information on using this editor, see Chapter 1,
Component Descriptor Editor User’s Guide in UIMA Tools Guide and Reference.

The initial page of the Component Descriptor Editor is the Overview page, which appears
as follows:

2 RoomiumberAnnotator. a1 =5
RopmiumberAnnotator. o

Overview
= Implementation Details = Owerall Identification Information
Irglementation Language {IC/C++ (5 Java This section spacifies the basic identification
o informaton for this desoiptor
Ergne Type (2} Primitiee r__.-.!-gg'cgat: = =
Hame gom Mumber Arnotator

= Runtime Information

This section describes information abaut haw ta run this component WEqon s

[Flupdatzs the Cas Verder The Apache Saftware Foundetion
[#] rultiple depoyment allavwed Descripien: | An axample arnotator that

Cutputs new CASE searches for room rumbers in the
Eloutputen i TBM \Watsan ressarch buidings.
ame of the Java dass fle org.apache, uma. tutorial.ex 1. Roomiumber Annotator
Browese|

Overview | Agoregate | Parameters | Parameter Settings | Type Systam | Capabiities | Indexes | REsources | Source |

This presents an overview of the RoomNumberAnnotator Analysis Engine (AE). The left
side of the page shows that this descriptor is for a Primitive AE (meaning it consists of

a single annotator), and that the annotator code is developed in Java. Also, it specifies
the Java class that implements our logic (the code which was discussed in the previous
section). Finally, on the right side of the page are listed some descriptive attributes of our
annotator.

The other two pages that need to be filled out are the Type System page and the
Capabilities page. You can switch to these pages using the tabs at the bottom of the
Component Descriptor Editor. In the tutorial, these are already filled out for you.

The RoomNumberAnnotator will be using the Tutorial TypeSystem we looked at in
Section Section 1.1.1, “Defining Types” [3]. To specify this, we add this type system

to the Analysis Engine's list of Imported Type Systems, using the Type System page's right
side panel, as shown here:

Annotator & AE Developer's Guide UIMA Version 2.3.0

../tools/tools.pdf#ugr.tools.cde
../tools/tools.pdf#ugr.tools.cde

Creating the XML Descriptor

Type System Definition

~ Types (or Classes) + Imported Type Systems
The followdng types (dasses) are defined in this analysis engine descriptor, The following type systems are included as
The grayed out items are imported or mergad from other descriptors, and cannot be part of this one,
edited here. {To edit them, edit their source files), =
Type Mame or Feature Name SuperType or Hange T
£ddJrpe Set DataPath

=l org. spache. uma. tutorial Roomiumber ma, teas, Annotation

Kirnd LocationMame
By Location TutoraTypeSystem.oml

3| T (2]

On the Capabilities page, we define our annotator's inputs and outputs, in terms of the
types in the type system. The Capabilities page is shown below:

2 RoomMumber Annotator . xml E?E.'\‘_ = =
RoomMumberannotator, xml

Capabilities: Inputs and Outputs

+ Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of
the Types and Features.

Mame Input | Output | Mame Space Add Capability Set
[—|set
Lang... Add Language
Sofas
= Type: Roomiumber Output org.apache.uima. tutarial Add Type
building Cutput Add Sofa

1

Remove

¢ Sofa Mappings (Only used in aggregate Descriptors)

Although capabilities come in sets, having multiple sets is deprecated; here we're just
using one set. The RoomNumberAnnotator is very simple. It requires no input types,
as it operates directly on the document text -- which is supplied as a part of the CAS
initialization (and which is always assumed to be present). It produces only one output

type (RoomNumber), and it sets the value of the bui | di ng feature on that type. This is all

represented on the Capabilities page.

UIMA Version 2.3.0 Annotator & AE Developer's Guide

11

Testing Your Annotator

The Capabilities page has two other parts for specifying languages and Sofas. The
languages section allows you to specify which languages your Analysis Engine supports.
The RoomNumberAnnotator happens to be language-independent, so we can leave this
blank. The Sofas section allows you to specify the names of additional subjects of analysis.
This capability and the Sofa Mappings at the bottom are advanced topics, described in
Chapter 5, Annotations, Artifacts, and Sofas [121].

This is all of the information we need to provide for a simple annotator. If you want to
peek at the XML that this tool saves you from having to write, click on the “Source” tab at
the bottom to view the generated XML.

1.1.5. Testing Your Annotator

Having developed an annotator, we need a way to try it out on some example documents.
The UIMA SDK includes a tool called the Document Analyzer that will allow us to do
this. To run the Document Analyzer, execute the documentAnalyzer shell script that is in
the bi n directory of your UIMA SDK installation, or, if you are using the example Eclipse
project, execute the “UIMA Document Analyzer” run configuration supplied with that

project. (To do this, click on the menu bar Run - Run ... —» and under Java Applications in
the left box, click on UIMA Document Analyzer.)

You should see a screen that looks like this:

#i Document Analyzer .[=1
File Help
"'_nﬂ Unstructured Information Management Architecture
) JI . An Apache Soubator Progeat
Irpuk Directory: | examplesidata
Oubpuk Directory: | examplesidatsiprocessed
Location of Analysis Engine EML Descriptar: | examplesidescriptorst anabysis_enginetPersonTitle Annotator . xml Browse. ,
¥ Tag containing Texk (optional):
Language: BN V
Character Encoding: LITF-2 1|
[Run | l Inkeractive] I Wigw]

There are six options on this screen:
1. Directory containing documents to analyze
2. Directory where analysis results will be written

3. The XML descriptor for the Analysis Engine (AE) you want to run

12

Annotator & AE Developer's Guide UIMA Version 2.3.0

Testing Your Annotator

4. (Optional) an XML tag, within the input documents, that contains the text to be
analyzed. For example, the value TEXT would cause the AE to only analyze the
portion of the document enclosed within <TEXT>...</TEXT> tags.

5. Language of the document

6. Character encoding

Use the Browse button next to the third item to set the “Location of AE XML Descriptor”
field to the descriptor we've just been discussing — <wher e- you-i nst al | ed- ui ma-

e. g. U MA_HOVE> / exanpl es/ descriptors/tutorial/exl/ RoonmNunber Annot at or . xm
. Set the other fields to the values shown in the screen shot above (which should be the

default values if this is the first time you've run the Document Analyzer). Then click the
“Run” button to start processing.

When processing completes, an “Analysis Results” window should appear.
-

|

These are the Analyzed Documents.

Select viewer type and double-click file to open.
[#] IBM_LifeSciences txt

[#] Mewe _EM_Fellowes txt

@ SeminarChalengesinSpeechRecognhition txd
@ TrainablelnformationExdractionSystems txt
@ LIMASUmnerSchool 2005

[#] Una,_Seminars tx

@ WatsonConferenceRooms bt

Resultz Display Format: (%) Java Wiewer (O HTML () XL

Performance Stats H Cloze]

Make sure “Java Viewer” is selected as the Results Display Format, and double-click on
the document UIMASummerSchool2003.txt to view the annotations that were discovered.
The view should look something like this:

UIMA Version 2.3.0 Annotator & AE Developer's Guide 13

Configuration and Logging

P

ILAkLA, Surrener School 'h

Cick In Tex to See Annotation Detod
ol

August 26, 2003

LUBALA, 101 - The New LIMA, intrachsction
(Hardds-on Tutorial)

O D0AM.5.000M i HAW GREKES

August 28, 2003
FROST Tuforisl
CoD0A -5 00PN i1 HAWY GN-KES

Septenber 15, 2003

LA, 201 UIMA Adhvanced Topics
{Hards-on Tulorisl)
SO0AM-500PM in HaW 15553

Sapberber 17, 2003

Thee L& System iInlegration Test and Hardening Service
The “SITH™

F00PM-4. 30PM in HaW GHK3S

eend
[Cloocuments, ., [+] Roombhmber

| Selectas || CeselectAl | ViewerMode: () Annctations () Entties

You can click the mouse on one of the highlighted annotations to see a list of all its
features in the frame on the right.

Note: The legend will only show those types which have at least one instance in

the CAS, and are declared as outputs in the capabilities section of the descriptor
(see Section 1.1.4, “Creating the XML Descriptor” [9].

You can use the DocumentAnalyzer to test any UIMA annotator — just make sure that the
annotator's classes are in the class path.

1.2. Configuration and Logging

1.2.1. Configuration Parameters

The example RoomNumberAnnotator from the previous section used hardcoded regular
expressions and location names, which is obviously not very flexible. For example,

you might want to have the patterns of room numbers be supplied by a configuration
parameter, rather than having to redo the annotator's Java code to add additional patterns.
Rather than add a new hardcoded regular expression for a new pattern, a better solution
is to use configuration parameters.

14

Annotator & AE Developer's Guide UIMA Version 2.3.0

Configuration Parameters

UIMA allows annotators to declare configuration parameters in their descriptors. The

descriptor also specifies default values for the parameters, though these can be overridden
at runtime.

1.2.1.1. Declaring Parameters in the Descriptor

The example descriptor descri ptors/tutori al / ex2/ RoomNunber Annot at or . xni is the
same as the descriptor from the previous section except that information has been filled in
for the Parameters and Parameter Settings pages of the Component Descriptor Editor.

First, in Eclipse, open example two's RoomNumberAnnotator in the Component
Descriptor Editor, and then go to the Parameters page (click on the parameters tab at the
bottom of the window), which is shown below:

Iﬁ RoomMNumberfnnotatoraml &2 =
RoomMumberAnnotator xml

Parameter Definitions

s
G

& Configuration Parameters - Mot Used

This section shows all corfiguration parameters defined far this This part is onhy used for Agoregate
engine. Descriptors
[Use Parameter Groups

=I-=Mot in amy group=
Multi Req String Mame:; Pattems
Multi Req String Mame: i e

List of room number regular expression patl'tems.|
Edit

Remove | == | |

Overview | Agaregate | Parameters | Parameter Settings | Type System Capabilities | Indexes | Resources :”1

Two parameters — Patterns and Locations -- have been declared. In this screen shot, the
mouse (not shown) is hovering over Patterns to show its description in the small popup
window. Every parameter has the following information associated with it:

* name - the name by which the annotator code refers to the parameter
¢ description — a natural language description of the intent of the parameter

* type — the data type of the parameter's value — must be one of String, Integer, Float,
or Boolean.

* multiValued - true if the parameter can take multiple-values (an array), false if the
parameter takes only a single value. Shown above as Mul ti .

UIMA Version 2.3.0 Annotator & AE Developer's Guide 15

Configuration Parameters

* mandatory — true if a value must be provided for the parameter. Shown above as
Req (for required).

Both of our parameters are mandatory and accept an array of Strings as their value.

Next, default values are assigned to the parameters on the Parameter Settings page:

Iﬁ RoomMNumberfnnotatorxml &3 —im
RoomMumberfnnotator xml

Parameter Settings | [E=

+ Configuration Parameters + Values

This section list all corfiguration parameters, ether Specify the value of the selected configuration

as plain parameters, or as part of one or mare parameter.

groups. Select one to show, or set the value in the _

right hand panel. Walue

[=- =Mot in any group: B4 [0-2Md b
Muti Req Sti Name: Patt b b bl L el
it BogSomg. | Noate: Licoons "BIGTINSHAZI b
: “od[12HA-Z] W W b

Walue list: Remove

P

Dlown

£l 23

Crverview | Agoreaate | Parameters Parameter Settings | Type System | Capabilities | Indexes | Resources :”1

Here the “Patterns” parameter is selected, and the right pane shows the list of values for
this parameter, in this case the regular expressions that match particular room numbering
conventions. Notice the third pattern is new, for matching the style of room numbers in
the third building, which has room numbers such as J2- A11.

1.2.1.2. Accessing Parameter Values from the Annotator Code

The class or g. apache. ui ma. t ut ori al . ex2. RoomNunber Annot at or has overridden
the initialize method. The initialize method is called by the UIMA framework when
the annotator is instantiated, so it is a good place to read configuration parameter
values. The default initialize method does nothing with configuration parameters, so
you have to override it. To see the code in Eclipse, switch to the src folder, and open
org. apache. ui ma. tutori al . ex2. Here is the method body:

/**
* @ee Anal ysi sConmponent #i nitialize(U maContext)
*/
public void initialize(U maContext aContext)
throws ResourcelnitializationException {
super.initialize(aContext);

Annotator & AE Developer's Guide UIMA Version 2.3.0

Configuration Parameters

/1 Get config. paraneter val ues
String[] patternStrings =

(String[]) aContext.getConfigParaneterVal ue("Patterns");
mLocations =

(String[]) aContext.getConfigParaneterVal ue("Locations");

/1 compile regul ar expressions

mPatterns = new Pattern[patternStrings.|ength];

for (int i =0; i < patternStrings.length; i++) {
mPatterns[i] = Pattern.conpile(patternStrings[i]);

}
}

Configuration parameter values are accessed through the UimaContext. As you will see
in subsequent sections of this chapter, the UimaContext is the annotator's access point for
all of the facilities provided by the UIMA framework — for example logging and external
resource access.

The UimaContext's get Conf i gPar anet er Val ue method takes the name of the parameter
as an argument; this must match one of the parameters declared in the descriptor. The
return value of this method is a Java Object, whose type corresponds to the declared type
of the parameter. It is up to the annotator to cast it to the appropriate type, String[] in this
case.

If there is a problem retrieving the parameter values, the framework throws an exception.
Generally annotators don't handle these, and just let them propagate up.

To see the configuration parameters working, run the Document Analyzer

application and select the descriptor exanpl es/ descri ptors/tutorial / ex2/
RoormNumber Annot at or . xn . In the example document Wat sonConf er enceRoons. t xt,
you should see some examples of Hawthorne II room numbers that would not have been
detected by the ex1 version of RoomNumberAnnotator.

1.2.1.3. Supporting Reconfiguration

If you take a look at the Javadocs (located in the docs/api’ directory) for

or g. apache. ui ma. anal ysi s_conponent . Anaysi sConponent (which our annotator
implements indirectly through JCasAnnotator_ImplBase), you will see that there is a
reconfigure() method, which is called by the containing application through the UIMA
framework, if the configuration parameter values are changed.

The AnalysisComponent_ImplBase class provides a default implementation that just
calls the annotator's destroy method followed by its initialize method. This works fine
for our annotator. The only situation in which you might want to override the default
reconfigure() is if your annotator has very expensive initialization logic, and you don't

5 api/index.html

UIMA Version 2.3.0 Annotator & AE Developer's Guide 17

api/index.html
api/index.html

Logging

want to reinitialize everything if just one configuration parameter has changed. In
that case, you can provide a more intelligent implementation of reconfigure() for your
annotator.

1.2.1.4. Configuration Parameter Groups

For annotators with many sets of configuration parameters, UIMA supports organizing
them into groups. It is possible to define a parameter with the same name in multiple
groups; one common use for this is for annotators that can process documents in
several languages and which want to have different parameter settings for the different
languages.

The syntax for defining parameter groups in your descriptor is fairly straightforward —
see Chapter 2, Component Descriptor Reference in UIMA References for details. Values of
parameters defined within groups are accessed through the two-argument version of
U maCont ext . get Conf i gPar aret er Val ue, which takes both the group name and the
parameter name as its arguments.

1.2.2. Logging

The UIMA SDK provides a logging facility, which is very similar to the
java.util.logging.Logger class that was introduced in Java 1.4.

In the Java architecture, each logger instance is associated with a name. By convention,
this name is often the fully qualified class name of the component issuing the logging call.
The name can be referenced in a configuration file when specifying which kinds of log
messages to actually log, and where they should go.

The UIMA framework supports this convention using the Ui maCont ext object. If you
access a logger instance using get Cont ext () . get Logger () within an Annotator, the
logger name will be the fully qualified name of the Annotator implementation class.

Here is an example from the process method of
org. apache. ui ma. tutori al . ex2. RoonNunber Annot at or :

get Cont ext (). get Logger ().l og(Level . FI NEST, "Found: " + annotation);

The first argument to the log method is the level of the log output. Here, a value

of FINEST indicates that this is a highly-detailed tracing message. While useful for
debugging, it is likely that real applications will not output log messages at this level,
in order to improve their performance. Other defined levels, from lowest to highest
importance, are FINER, FINE, CONFIG, INFO, WARNING, and SEVERE.

If no logging configuration file is provided (see next section), the Java Virtual Machine
defaults would be used, which typically set the level to INFO and higher messages, and
direct output to the console.

18 Annotator & AE Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.component_descriptor

Logging

If you specify the standard UIMA SDK Logger . properties, the output will be directed
to a file named uima.log, in the current working directory (often the “project” directory
when running from Eclipse, for instance).

Note: When using Eclipse, the uima.log file, if written into the Eclipse
workspace in the project uimaj-examples, for example, may not appear in the
Eclipse package explorer view until you right-click the uimaj-examples project
with the mouse, and select “Refresh”. This operation refreshes the Eclipse display
to conform to what may have changed on the file system. Also, you can set the

Eclipse preferences for the workspace to automatically refresh (Window —

Preferences — General — Workspace, then click the “refresh automatically”
checkbox.

1.2.2.1. Specifying the Logging Configuration

The standard UIMA logger uses the underlying Java 1.4 logging mechanism. You can

use the APIs that come with that to configure the logging. In addition, the standard

Java 1.4 logging initialization mechanisms will look for a Java System Property named
java.util.logging.config.fileand if found, will use the value of this property as the
name of a standard “properties” file, for setting the logging level. Please refer to the Java
1.4. documentation for more information on the format and use of this file.

Two sample logging specification property files can be found in the UIMA_HOME
directory where the UIMA SDK is installed: conf i g/ Logger . properti es, and confi g/

Fi | eConsol eLogger . properti es. These specify the same logging, except the first logs
just to a file, while the second logs both to a file and to the console. You can edit these files,
or create additional ones, as described below, to change the logging behavior.

When running your own Java application, you can specify the location of the logging
configuration file on your Java command line by setting the Java system property
java.util.logging.config.file tobe thelogging configuration filename. This file
specification can be either absolute or relative to the working directory. For example:

java "-Djava. util .l ogging.config.file=C/Program Fil es/ apache-ui ma/ confi g/ Logger. properties"

Note: In a shell script, you can use environment variables such as
UIMA_HOME if convenient.

If you are using Eclipse to launch your application, you can set this property in
the VM arguments section of the Arguments tab of the run configuration screen. If
you've set an environment variable UIMA_HOME, you could for example, use the
string: " - Dj ava. util .l oggi ng. config.file=${env_var: U MA_HOVE}/ confi g/
Logger. properties"”.

If you running the .bat or .sh files in the UIMA SDK's bi n directory, you can specify the
location of your logger configuration file by setting the U MA_LOGGER_CONFI G_FI LE
environment variable prior to running the script, for example (on Windows):

UIMA Version 2.3.0 Annotator & AE Developer's Guide 19

Logging

set U MA_LOGGER_CONFI G FI LE=C: / myapp/ MyLogger . properties

1.2.2.2. Setting Logging Levels

Within the logging control file, the default global logging level specifies which kinds

of events are logged across all loggers. For any given facility this global level can

be overridden by a facility specific level. Multiple handlers are supported. This

allows messages to be directed to a log file, as well as to a “console”. Note that the
ConsoleHandler also has a separate level setting to limit messages printed to the console.
For example: . | evel = | NFO

The properties file can change where the log is written, as well.

Facility specific properties allow different logging for each class, as well. For example, to
set the com.xyz.foo logger to only log SEVERE messages: com xyz. f oo. | evel = SEVERE

If you have a sample annotator in the package or g. apache. ui na. Sanpl eAnnot at or you
can set the log level by specifying: or g. apache. ui ma. Sanpl eAnnot ator. | evel = ALL

There are other logging controls; for a full discussion, please read the contents of the
Logger . properti es file and the Java specification for logging in Java 1.4.

1.2.2.3. Format of logging output

The logging output is formatted by handlers specified in the properties file for configuring
logging, described above. The default formatter that comes with the UIMA SDK formats
logging output as follows:

Timestanp - threadl D. sourcelnfo: Message |evel: nessage
Here's an example:

7/ 12/ 04 2:15:35 PM - 10: org.apache.uinma.util.TestC ass. mai n(62): | NFO
You are not | ogged in!

1.2.2.4. Meaning of the logging severity levels

These levels are defined by the Java logging framework, which was incorporated into Java
as of the 1.4 release level. The levels are defined in the Javadocs for java.util.logging.Level,
and include both logging and tracing levels:

* OFF is a special level that can be used to turn off logging.
ALL indicates that all messages should be logged.
CONFIG is a message level for configuration messages. These would typically occur
once (during configuration) in methods like i ni ti al i ze().
INFO is a message level for informational messages, for example, connected to
server IP: 192.168.120.12
WARNING is a message level indicating a potential problem.
SEVERE is a message level indicating a serious failure.

Annotator & AE Developer's Guide UIMA Version 2.3.0

Building Aggregate Analysis Engines

Tracing levels, typically used for debugging:

* FINE is a message level providing tracing information, typically at a collection level
(messages occurring once per collection).

¢ FINER indicates a fairly detailed tracing message, typically at a document level
(once per document).

* FINEST indicates a highly detailed tracing message.

1.2.2.5. Using the logger outside of an annotator

An application using UIMA may want to log its messages using the same logging
framework. This can be done by getting a reference to the UIMA logger, as follows:

Logger | ogger = U MAFranmewor k. get Logger (Test d ass. cl ass) ;

The optional class argument allows filtering by class (if the log handler supports this). If
not specified, the name of the returned logger instance is “org.apache.uima”.

1.2.2.6. Changing the underlying UIMA logging implementation

By default the UIMA framework use, under the hood of the UIMA Logger interface,
the Java logging framework to do logging. But it is possible to change the logging
implementation that UIMA use from Java logging to an arbitrary logging system when
specifying the system property

- Dor g. apache. ui ma. | ogger . cl ass=<I| ogger d ass>
when the UIMA framework is started.

The specified logger class must be available in the classpath and have to implement the
org. apache. ui ma. util . Logger interface.

UIMA also provides a logging implementation that use Apache Log4j instead of Java
logging. To use Log4j you have to provide the Log4; jars in the classpath and your
application must specify the logging configuration as shown below.

‘ - Dor g. apache. ui ma. | ogger. cl ass=<or g. apache. ui ma. util .i npl.Log4j Logger i npl >

1.3. Building Aggregate Analysis Engines

1.3.1. Combining Annotators

The UIMA SDK makes it very easy to combine any sequence of Analysis Engines to form
an Aggregate Analysis Engine. This is done through an XML descriptor; no Java code is
required!

UIMA Version 2.3.0 Annotator & AE Developer's Guide 21

Combining Annotators

If you go to the exanpl es/ descri ptors/tutorial / ex3 folder (in Eclipse, it's in your
uimaj-examples project, under the descri pt ors/ tutori al / ex3 folder), you will find

a descriptor for a TutorialDateTime annotator. This annotator detects dates and times
(and also sentences and words). To see what this annotator can do, try it out using the
Document Analyzer. If you are curious as to how this annotator works, the source code is
included, but it is not necessary to understand the code at this time.

We are going to combine the TutorialDateTime annotator with the
RoomNumberAnnotator to create an aggregate Analysis Engine. This is illustrated in the
following figure:

TutorialDateTime Date, Time
N
RoomNumberAnnotator RoomNumber
' >
RoomNumberAndDateTime N
¥ Y Date, Time,
TutorialDate Time RoomNumberAnnotator RoomNumber
=
>

Figure 1.1. Combining Annotators to form an Aggregate Analysis Engine

The descriptor that does this is named RoomNunber AndDat eTi ne. xml , which you can
open in the Component Descriptor Editor plug-in. This is in the uimaj-examples project in
the folder descri ptors/tutorial / ex3.

The “Aggregate” page of the Component Descriptor Editor is used to define which
components make up the aggregate. A screen shot is shown below. (If you are not using
Eclipse, see Section 1.8, “Analysis Engine XML Descriptor” [45] for the actual XML
syntax for Aggregate Analysis Engine Descriptors.)

22

Annotator & AE Developer's Guide UIMA Version 2.3.0

Combining Annotators

[Roomhumber AndDataTme.xml 0 e
Roomiiumber AndDabeTime, xmi
Aggregate Delegates and Flows

wen

= Component Engines = Component Engine Flow

The following engines are incuded in this aggregate, Choose a fiow type and describe the
execution order of your engines,

Delegate | Key Name The table shows the delegates using their

El « fex2RoomiumberAnnotator.xml RoomMNumber key names.

@Tutﬂrialﬂateﬁme.ml DateTime Flow Kind: Fixed Flow -
[} RoomMNumber I:I
[} DateTime

Bl

il L1

[][]

Overview | Aggregate | Parameters | Parameter Settings | Type System Capabilities ' Indexes | Resources | Source

On the left side of the screen is the list of component engines that make up the aggregate
—in this case, the TutorialDateTime annotator and the RoomNumberAnnotator. To add
a component, you can click the “Add” button and browse to its descriptor. You can also
click the “Find AE” button and search for an Analysis Engine in your Eclipse workspace.

Note: The “AddRemote” button is used for adding components which

run remotely (for example, on another machine using a remote networking
connection). This capability is described in section Section 3.6.3, “Calling a UIMA
Service” [98],

The order of the components in the left pane does not imply an order of execution. The
order of execution, or “flow” is determined in the “Component Engine Flow” section
on the right. UIMA supports different types of algorithms (including user-definable) for
determining the flow. Here we pick the simplest: Fi xedFl ow. We have chosen to have
the RoomNumberAnnotator execute first, although in this case it doesn't really matter,
since the RoomNumber and DateTime annotators do not have any dependencies on one
another.

If you look at the “Type System” page of the Component Descriptor Editor, you will see
that it displays the type system but is not editable. The Type System of an Aggregate
Analysis Engine is automatically computed by merging the Type Systems of all of its
components.

Warning: If the components have different definitions for the same type
name, The Component Descriptor Editor will show a warning. It is possible to
continue past this warning, in which case your aggregate's type system will have
the correct “merged” type definition that contains all of the features defined on

UIMA Version 2.3.0 Annotator & AE Developer's Guide 23

Combining Annotators

that type by all of your components. However, it is not recommended to use this
feature in conjunction with JCAS, since the JCAS Java Class definitions cannot be
so easily merged. See Section 5.5, “Merging Types” in UIMA References for more
information.

The Capabilities page is where you explicitly declare the aggregate Analysis Engine's
inputs and outputs. Sofas and Languages are described later.

_@F‘.DDmNumber.ﬁ.ndDate'ﬁme.xml 52 : ="
[RoomNumber AndDateTime. xml

Capabilities: Inputs and Outputs i |

+ Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of the
Types and Features,

- Mare Input | Output | Mame Space Add Capability Set
I=lSet
—|Languages Add Language
en
Sofae Add Type
—|Type: DateAnnot Qutput org.apache.uima. tutorial Add 5ofa
=all features > Qutput
—IType: RoomMumber Cutput org.apache.uima, tutorial 1/Edit Features
<all features > Qutput
FType: TimeAnnot Qutput org.apache.uima. tutorial
<all features > Qutput

b Sofa Mappings (No Sofas are defined)

| Overview : Aggregate [Parameters [Parameter Settings [Type System | Capabiliies | Indexes : Resources [Suurce:

Note that it is not automatically assumed that all outputs of each component Analysis
Engine (AE) are passed through as outputs of the aggregate AE. In this case, for example,
we have decided to suppress the Word and Sentence annotations that are produced by the
TutorialDateTime annotator.

You can run this AE using the Document Analyzer in the same way that you

run any other AE. Just select the exanpl es/ descri ptors/tutorial / ex3/

RoomNunber AndDat eTi me. xm descriptor and click the Run button. You should see that
RoomNumbers, Dates, and Times are all shown but that Words and Sentences are not:

24

Annotator & AE Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.jcas.merging_types_from_other_specs

AAESs can also contain CAS Consumers

1
UBMA Summer School | Click In Text to See Arnotation Detal

ey

August 26, 2003

LIBdA 101 - The New UIMA Introduction |
(Handds-on Tutorial)

S 00AM-5:00PM in HAVY GN-K35

August 28, 2003
FROST Tutorist

SO0AM-SO0PM in HAW GMN-HIS

September 15, 2003
UBWA 201: UIMA, Advanced Topics
{Hands-on Tutorial)
SO0AM-5:00PM in HAW 15-F53

September 17, 2003

The UiA System Infegration Test and Hardening Service
The “SITH"

F00PHM-4:30PM in HAW GM-K35

egend
[bocume... Dalean. .. TiresAn ., Riaormiu...

| Selectan || Deselectau |

1.3.2. AAEs can also contain CAS Consumers

In addition to aggregating Analysis Engines, Aggregates can also contain CAS Consumers
(see Chapter 2, Collection Processing Engine Developer’s Guide [51], or even a mixture of
these components with regular Analysis Engines. The UIMA Examples has an example of
an Aggregate which contains both an analysis engine and a CAS consumer, in exanpl es/
descri pt ors/ M xedAggr egat e. xm .

Analysis Engines support the col | ect i onPr ocessConpl et e method, which is
particularly important for many CAS Consumers. If an application (or a Collection
Processing Engine) calls col | ecti onPr ocessConpl et e no an aggregate, the framework
will deliver that call to all of the components of the aggregate. If you use one of the built-
in flow types (fixedFlow or capabilityLanguageFlow), then the order specified in that flow
will be the same order in which the col | ect i onPr ocessConpl et e calls are made to the
components. If a custom flow is used, then the calls will be made in arbitrary order.

UIMA Version 2.3.0 Annotator & AE Developer's Guide 25

Reading the Results of Previous Annotators

1.3.3. Reading the Results of Previous Annotators

So far, we have been looking at annotators that look directly at the document text.
However, annotators can also use the results of other annotators. One useful thing we can
do at this point is look for the co-occurrence of a Date, a RoomNumber, and two Times —
and annotate that as a Meeting.

The CAS maintains indexes of annotations, and from an index you can obtain an iterator
that allows you to step through all annotations of a particular type. Here's some example
code that would iterate over all of the TimeAnnot annotations in the JCas:

FSI ndex tinel ndex = aJCas. get Annot ati onl ndex(Ti nreAnnot . type) ;
Iterator tinmelter = timelndex.iterator();
while (tinmelter.hasNext()) {

Ti meAnnot tine = (TimeAnnot)tinelter.next();

/1 do sonet hi ng

}

Note: You can also use the method

JCAS. get JFSI ndexReposi tory(). get Al | | ndexedFS(Your d ass. t ype), which
returns an iterator over all instances of Your O ass in no particular order. This can
be useful for types that are not subtypes of the built-in Annotation type and which
therefore have no default sort order.

Now that we've explained the basics, let's take a look at the process method for

org. apache. ui ma. tutori al . ex4. Meet i ngAnnot at or . Since we're looking for a
combination of a RoomNumber, a Date, and two Times, there are four nested iterators.
(There's surely a better algorithm for doing this, but to keep things simple we're just going
to look at every combination of the four items.)

For each combination of the four annotations, we compute the span of text that includes
all of them, and then we check to see if that span is smaller than a “window” size, a
configuration parameter. There are also some checks to make sure that we don't annotate
the same span of text multiple times. If all the checks pass, we create a Meeting annotation
over the whole span. There's really nothing to it!

The XML descriptor, located in exanpl es/ descri ptors/tutorial / ex4/

Meet i ngAnnot at or . xni , is also very straightforward. An important difference from
previous descriptors is that this is the first annotator we've discussed that has input
requirements. This can be seen on the “Capabilities” page of the Component Descriptor
Editor:

26 Annotator & AE Developer's Guide UIMA Version 2.3.0

Other examples

B MeetingAnnotator.xml 53 - g
{MeetingAnnotatar, xml

Capabilities: Inputs and Outputs HE]

» Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of the
Types and Features,

Mame Input | Output | Mame Space Add Capability Set
— ek

|=| Languages Add Language

en
Ehbas Add Type

—| Type: DateAnnot Input org.apache.uima. tutorial Add Sofa
<all features> Input

= Type: Meeting Qutput org.apache.uima. tutorial : hres
<all features = Qutput

— Type: RoomMumber Input org.apache.uima. tutorial Eait
<all features>= Input

HType: TimeAnnot Input org.apache. uima. tutorial Remove

<all features>= Input

» Sofa Mappings (Only used in aggregate Descriptors)

Overview [Aggregate : Parameters [Parameter Settings [Type System :_l;apal:uiliﬁes_' Indexes [Resources Source :

If we were to run the MeetingAnnotator on its own, it wouldn't detect anything because

it wouldn't have any input annotations to work with. The required input annotations can
be produced by the RoomNumber and DateTime annotators. So, we create an aggregate
Analysis Engine containing these two annotators, followed by the Meeting annotator. This
aggregate is illustrated in Figure 1.2, “An Aggregate Analysis Engine where an internal
component uses output from previous engines” [27]. The descriptor for this is in

exanpl es/ descriptors/tutorial/ex4/ MeetingDet ect or AE. xnl . Give it a try in the

Document Analyzer.
Date, Time Date, Time,
RoomNumber

MeetingDetectorTAE .. R ————
TutorialDateTime RoomNumberAnnotator MeetingAnnotator Mestng
N 5| (Requires: Date, Time —
and RoomNumber) s

Figure 1.2. An Aggregate Analysis Engine where an
internal component uses output from previous engines

1.4. Other examples

The UIMA SDK include several other examples you may find interesting, including
¢ SimpleTokenAndSentenceAnnotator — a simple tokenizer and sentence annotator.

UIMA Version 2.3.0 Annotator & AE Developer's Guide 27

Additional Topics

¢ XmlDetagger — A multi-sofa annotator that does XML detagging. Multiple Sofas
(Subjects of Analysis) are described in a later — see Chapter 6, Multiple CAS Views of
an Artifact [127]. Reads XML data from the input Sofa (named "xmlDocument");
this data can be stored in the CAS as a string or array, or it can be a URI to a remote
file. The XML is parsed using the JVM's default parser, and the plain-text content is
written to a new sofa called "plainTextDocument".

¢ PersonTitleDBWriterCasConsumer — a sample CAS Consumer which populates a
relational database with some annotations. It uses JDBC and in this example, hooks
up with the Open Source Apache Derby database.

1.5. Additional Topics

1.5.1. Contract: Annotator Methods Called by the

Framework

The UIMA framework ensures that an Annotator instance is called by only one thread at a
time. An instance never has to worry about running some method on one thread, and then
asynchronously being called using another thread. This approach simplifies the design of
annotators — they do not have to be designed to support multi-threading. When multiple
threading is wanted, for performance, multiple instances of the Annotator are created,
each one running on just one thread.

The following table defines the methods called by the framework, when they are called,
and the requirements annotator implementations must follow.

the type system in the CAS
being passed in differs from
what was previously passed in

a process call (and called for
the first CAS passed in, too). The
Type System being passed to an
annotator only changes in the
case of remote annotators that
are active as servers, receiving

Method When Called by Framework Requirements

initialize Typically only called once, Normally does one-time
when instance is created. Can be | initialization, including reading
called again if application does of configuration parameters.
a reinitialize call and the default | If the application changes the
behavior isn't overridden (the parameters, it can call initialize
default behavior for reinitialize to have the annotator re-do its
is to call dest r oy followed by initialization.
initialize

typeSystemlInit | Called before pr ocess whenever | Typically, users of JCas do not

implement any method for this.
An annotator can use this call to
read the CAS type system and
setup any instance variables that
make accessing the types and
features convenient.

28 Annotator & AE Developer's Guide

UIMA Version 2.3.0

Annotator Methods

Method

When Called by Framework

Requirements

possibly different type systems to
operate on.

process

Called once for each CAS. Called
by the application if not using
Collection Processing Manager
(CPM); the application calls

the process method on the
analysis engine, which is then
delegated by the framework

to all the annotators in the
engine. For Collection Processing
application, the CPM calls the
process method. If the application
creates and manages your own
Collection Processing Engine

via API calls (see Javadocs),

the application calls this on the
Collection Processing Engine, and
it is delegated by the framework
to the components.

Process the CAS, adding and/or
modifying elements in it

destroy

This method can be called by
applications, and is also called
by the Collection Processing
Manager framework when the
collection processing completes.
It is also called on Aggregate
delegate components, if those
components successfully
complete theirinitialize

call, if a subsequent delegate
(or flow controller) in the
aggregate fails to initialize.

This allows components which
need to clean up things done
during initialization to do

so. It is up to the component
writer to use a try/finally
construct during initialization to
cleanup from errors that occur
during initialization within one
component. The dest r oy call on

An annotator should release

all resources, close files, close
database connections, etc., and
return to a state where another
initialize call could be received to
restart. Typically, after a destroy
call, no further calls will be made
to an annotator instance.

UIMA Version 2.3.0

Annotator & AE Developer's Guide 29

Reporting errors from Annotators

framework, unless an application
calls it on the Engine object —

in which case it the framework
propagates it to all annotators
contained in the Engine.

Its purpose is to signal that the
configuration parameters have
changed.

Method When Called by Framework Requirements
an aggregate is propagated to all
contained analysis engines.
reconfigure This method is never called by the | A default implementation of

this calls destroy, followed by
initialize. This is the only case
where initialize would be called
more than once. Users should
implement whatever logic is
needed to return the annotator
to an initialized state, including
re-reading the configuration
parameter data.

1.5.2. Reporting errors from Annotators

There are two broad classes of errors that can occur: recoverable and unrecoverable.
Because Annotators are often expected to process very large numbers of artifacts (for
example, text documents), they should be written to recover where possible.

For example, if an upstream annotator created some input for an annotator which is

invalid, the annotator may want to log this event, ignore the bad input and continue. It

may include a notification of this event in the CAS, for further downstream annotators to

consider. Or, it may throw an exception (see next section) — but in this case, it cannot do
any further processing on that document.

Note: The choice of what to do can be made configurable, using the

configuration parameters.

1.5.3. Throwing Exceptions from Annotators

Let's say an invalid regular expression was passed as a parameter to the

RoomNumberAnnotator. Because this is an error related to the overall configuration, and

not something we could expect to ignore, we should throw an appropriate exception, and

most Java programmers would expect to do so like this:

throw new Resourcelnitializati onException(

"The regul ar expression "

+ X + "

is not valid.");

UIMA, however, does not do it this way. All UIMA exceptions are internationalized,
meaning that they support translation into other languages. This is accomplished
by eliminating hardcoded message strings and instead using external message
digests. Message digests are files containing (key, value) pairs. The key is used in
the Java code instead of the actual message string. This allows the message string

30

Annotator & AE Developer's Guide

UIMA Version 2.3.0

Throwing Exceptions from Annotators

to be easily translated later by modifying the message digest file, not the Java code.
Also, message strings in the digest can contain parameters that are filled in when the
exception is thrown. The format of the message digest file is described in the Javadocs
for the Java class j ava. uti | . Propert yResour ceBundl e and in the load method of
java. util.Properties.

The first thing an annotator developer must choose is what Exception class to use. There
are three to choose from:

1. ResourceConfigurationException should be thrown from the annotator's
reconfigure() method if invalid configuration parameter values have been specified.

2. ResourcelnitializationException should be thrown from the annotator's initialize()
method if initialization fails for any reason (including invalid configuration
parameters).

3. AnalysisEngineProcessException should be thrown from the annotator's process()
method if the processing of a particular document fails for any reason.

Generally you will not need to define your own custom exception classes, but if you do
they must extend one of these three classes, which are the only types of Exceptions that
the annotator interface permits annotators to throw.

All of the UIMA Exception classes share common constructor varieties. There are four
possible arguments:

The name of the message digest to use (optional — if not specified the default UIMA
message digest is used).

The key string used to select the message in the message digest.

An object array containing the parameters to include in the message. Messages can have
substitutable parts. When the message is given, the string representation of the objects
passed are substituted into the message. The object array is often created using the syntax
new Object[]{x, y}.

Another exception which is the “cause” of the exception you are throwing. This feature is
commonly used when you catch another exception and rethrow it. (optional)

If you look at source file (folder: src in Eclipse)
org. apache. ui ma. tutori al . ex5. RoomNunber Annot at or , you will see the following
code:

try {
nmPatterns[i] = Pattern.conpile(patternStrings[i]);

}
catch (PatternSyntaxException e) {
t hrow new Resourcelnitializati onException(
MESSAGE DI GEST, "regex_syntax_error",
new OQbject[]{patternStrings[i]}, €);

UIMA Version 2.3.0 Annotator & AE Developer's Guide 31

Throwing Exceptions from Annotators

where the MESSAGE_DIGEST constant has the value
"org.apache. ui ma. tutori al . ex5. RoomNunber Annot at or _Messages”.

Message digests are specified using a dotted name, just like Java classes. This file,

with the .properties extension, must be present in the class path. In Eclipse, you find
this file under the src folder, in the package org.apache.uima.tutorial.ex5, with the
name RoomNumberAnnotator_Messages.properties. Outside of Eclipse, you can find
this in the ui maj - exanpl es. j ar with the name or g/ apache/ ui na/t ut ori al / ex5/
RoomNunber Annot at or _Messages. properties. If you look in this file you will see the
line:

regex_syntax_error = {0} is not a valid regul ar expression.

which is the error message for the example exception we showed above. The placeholder
{0} will be filled by the toString() value of the argument passed to the exception
constructor — in this case, the regular expression pattern that didn't compile. If there were
additional arguments, their locations in the message would be indicated as {1}, {2}, and so
on.

If a message digest is not specified in the call to the exception constructor,

the default is U MAExcept i on. STANDARD_MESSAGE CATALOG (whose value is

“or g. apache. ui ma. U MAExcept i on_Messages ” in the current release but may
change). This message digest is located in the ui ma- core. j ar file at or g/ apache/ ui ma/
U MAExcept i on_nessages. properti es — you can take a look to see if any of these
exception messages are useful to use.

To try out the regex_syntax_error exception, just use the Document Analyzer to run
exanpl es/ descri ptors/tutorial/ex5/ Room\urber Annot at or. xm , which happens to
have an invalid regular expression in its configuration parameter settings.

To summarize, here are the steps to take if you want to define your own exception
message:

Create a file with the .properties extension, where you declare message keys and their
associated messages, using the same syntax as shown above for the regex_syntax_error
exception. The properties file syntax is more completely described in the Javadocs for the
load® method of the java.util.Properties class.

Put your properties file somewhere in your class path (it can be in your annotator's .jar
file).

Define a String constant (called MESSAGE_DIGEST for example) in your annotator code
whose value is the dotted name of this properties file. For example, if your properties file
is inside your jar file at the location or g/ myor g/ nyannot at or / Messages. properties,

6 http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

32

Annotator & AE Developer's Guide UIMA Version 2.3.0

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

Accessing External Resource Files

then this String constant should have the value or g. myor g. nyannot at or . Messages.
Do not include the .properties extension. In Java Internationalization terminology, this
is called the Resource Bundle name. For more information see the Javadocs for the
PropertyResourceBundle’ class.

In your annotator code, throw an exception like this:
throw new ResourcelnitializationException(

MESSAGE_DI GEST, "your _nessage_nane",
new Cbj ect[]{parant, paran?,...});

You may also wish to look at the Javadocs for the UIMAException class.

For more information on Java's internationalization features, see the Java
Internationalization Guide®.

1.5.4. Accessing External Resource Files

Sometimes you may want an annotator to read from an external file — for example, a long
list of keys and values that you are going to build into a HashMap. You could, of course,
just introduce a configuration parameter that holds the absolute path to this resource file,
and build the HashMap in your annotator's initialize method. However, this is not the best
solution for three reasons:

1. Including an absolute path in your descriptor makes your annotator difficult for
others to use. Each user will need to edit this descriptor and set the absolute path to
a value appropriate for his or her installation.

2. You cannot share the HashMap between multiple annotators. Also, in some
deployment scenarios there may be more than one instance of your annotator, and
you would like to have the option for them to use the same HashMap instance.

3. Your annotator would become dependent on a particular data representation — the
word list would have to come from a file on the local disk and it would have to be
in a particular format. It would be better if this were decoupled.

A better way to access external resources is through the ResourceManager component. In
this section we are going to show an example of how to use the Resource Manager.

This example annotator will annotate UIMA acronyms (e.g. UIMA, AE, CAS, JCas) and
store the acronym's expanded form as a feature of the annotation. The acronyms and their
expanded forms are stored in an external file.

First, look at the exanpl es/ descri ptors/tutorial /ex6/ Ui maAcr onymAnnot at or . xm
descriptor.

7 http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html
8 http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html

UIMA Version 2.3.0 Annotator & AE Developer's Guide 33

http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html

Accessing External Resource Files

[B Uimaseronymannotater. s 51

LimaforonymAnnatator.xml
Resources
* Resources Heeds, Definitions and Bindings * Resource Dependencies
Spedfy External Resources; Bind them to dependendes on the right panel by Prmitives dedare what resources they meed, A primithve
selacting the corresponding dependency and didding Bind. cam only bind to one external resournce,
= UimaAcronymTabieRle URL: file:org/apachs fuima tutorial fexb | Bound | Cptional? | Keys Intel
Bound to: AcronymTable Bourd regured AcronymTable org.:

7 Fe—— >
= Imports for External Resources and Bindings
The fellowing definitions are included:

Kind | Lacaton/Name I

Cnerview | Apgregate | Farameters Parameter Settings TmS}rstunICquﬂﬁes In:lewesiRﬂquui Source

The values of the rows in the two tables are longer than can be easily shown. You can

click the small button at the top right to shift the layout from two side-by-side tables, to a
vertically stacked layout. You can also click the small twisty on the “Imports for External
Resources and Bindings” to collapse this section, because it's not used here. Then the same
screen will appear like this:

B umaAcronymannatater ol 3 ~Hal
UimaAoronymAnmoiator, xml
Resources LRI

~ Resources Heeds, Definitions and Bindings
Spedfy External Resources; Bind them to dependendies on the nght panel by selecting the corresponding dependency and didkdng Bind.

= UimaAcronymTableFle URL: fie:orgfapache uima iutonialfexdfimaAoonyms. bt Implementation: org.apache.uma. utonal.exd. SringMapResource_impl
Sound to: AanymTable

» Imports for External Resources and Bindings

= Respurce Dependencies
Primitives dedare what resources they need. A primitive can only bind to one external resource,

|Em.nd Optianal? | Keys Interface Mame

| Bound :tﬁurtr.l AcronymTable nfg.madt.wnu.wtmahcxé.SUthapéﬁm

Om'iew.ﬁmramuéPu{mimetu SetlirmHmcS\fshemiCap&Jihesilrﬂem IR:SMSIME

The top window has a scroll bar allowing you to see the rest of the line.

Annotator & AE Developer's Guide UIMA Version 2.3.0

Accessing External Resource Files

1.5.4.1. Declaring Resource Dependencies

The bottom window is where an annotator declares an external resource dependency. The
XML for this is as follows:

<ext er nal Resour ceDependency>
<key>Acr onynirabl e</ key>
<descri pti on>Tabl e of acronyns and their expanded forns.</description>
<i nt er f aceNane>
org. apache. ui ma.tutorial . ex6. St ri ngMapResour ce
</interfaceNane>
</ ext er nal Resour ceDependency>

The <key> value (AcronymTable) is the name by which the annotator identifies this
resource. The key must be unique for all resources that this annotator accesses, but the
same key could be used by different annotators to mean different things. The interface
name (or g. apache. ui ma. tut ori al . ex6. St ri ngMapResour ce) is the Java interface
through which the annotator accesses the data. Specifying an interface name is optional. If
you do not specify an interface name, annotators will get direct access to the data file.

1.5.4.2. Accessing the Resource from the UimaContext

If you look at the or g. apache. ui ma. tut ori al . ex6. Ui neAcr onymAnnot at or source, you
will see that the annotator accesses this resource from the UimaContext by calling:

Stri ngMapResource mvap =
(StringMapResour ce) get Cont ext (). get Resour ceObj ect (" Acr onyniabl e") ;

The object returned from the get Resour ceObj ect method will implement the interface
declared in the <i nt er f aceNane> section of the descriptor, St ri ngMapResour ce in this
case. The annotator code does not need to know the location of the data nor the Java class
that is being used to read the data and implement the St ri ngMapResour ce interface.

Note that if we did not specify a Java interface in our descriptor, our annotator could
directly access the resource data as follows:

I nput Stream stream = get Cont ext (). get Resour ceAsSt r ean(" Acr onynirabl e") ;

If necessary, the annotator could also determine the location of the resource file, by calling:

URI uri = getContext().getResourceURl ("Acronymrabl e");

These last two options are only available in the case where the descriptor does not declare
a Java interface.

Note: The methods for getting access to resources include get Resour ceURL.
That method returns a URL, which may contain spaces encoded as %20.
url.getPath() would return the path without decoding these %20 into spaces.

UIMA Version 2.3.0 Annotator & AE Developer's Guide 35

Accessing External Resource Files

get Resour ceURI on the other hand, returns a URI, and the uri.getPath() does do
the conversion of %20 into spaces. See also get Resour ceFi | ePat h, which does a
getResourceURI followed by uri.getPath().

1.5.4.3. Declaring Resources and Bindings

Refer back to the top window in the Resources page of the Component Descriptor Editor.
This is where we specify the location of the resource data, and the Java class used to read
the data. For the example, this corresponds to the following section of the descriptor:

<r esour ceManager Confi gur ati on>
<ext er nal Resour ces>
<ext er nal Resour ce>
<name>U maAcr onynirabl eFi | e</ name>
<descri pti on>
A table containing UM acronyns and their expanded forns.
</ descri pti on>
<fil eResour ceSpecifier>
<fileUrl>file:org/apache/ ui ma/tutorial/ex6/ui mAcronyns. t xt
</[fileUrl>
</fil eResour ceSpecifier>
<i npl enent at i onNanme>
org. apache. ui ma. tutori al . ex6. Stri ngMapResour ce_i npl
</'i npl ement at i onNanme>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>Acr onyniTabl e</ key>
<r esour ceName>Ui maAcr onyniabl eFi | e</ r esour ceNanme>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>
</ resour ceManager Conf i gur ati on>

The first section of this XML declares an externalResource, the Ui maAcr onyniTabl eFi | e.
With this, the fileUrl element specifies the path to the data file. This can be an absolute
URL (e.g. one that starts with file:/ or file:///, or file://my.host.org/), but that is not
recommended because it makes installation of your component more difficult, as noted
earlier. Better is a relative URL, which will be looked up within the classpath (and/or
datapath), as used in this example. In this case, the file or g/ apache/ ui ma/tut ori al / ex6/
ui maAcronyns. t xt is located in ui maj - exanpl es. j ar, which is in the classpath. If you
look in this file you will see the definitions of several UIMA acronyms.

The second section of the XML declares an externalResourceBinding, which connects
the key Acr onynirabl e, declared in the annotator's external resource dependency, to the
actual resource name Ui maAcr onyniTabl eFi | e. This is rather trivial in this case; for more
on bindings see the example Ui maMeet i ngDet ect or AE. xni below. There is no global
repository for external resources; it is up to the user to define each resource needed by a
particular set of annotators.

36 Annotator & AE Developer's Guide UIMA Version 2.3.0

Accessing External Resource Files

In the Component Descriptor Editor, bindings are indicated below the external resource.
To create a new binding, you select an external resource (which must have previously
been defined), and an external resource dependency, and then click the Bi nd button,
which only enables if you have selected two things to bind together.

When the Analysis Engine is initialized, it creates a single instance of

St ri ngMapResour ce_i npl and loads it with the contents of the data file. This means that
the framework calls the instance's | oad method, passing it an instance of DataResource,
from which you can obtain a stream or URI/URL of the external resource that was
declared in the external resource; for resources where loading does not make sense,

you can implement a | oad method which ignores its argument and just returns. See the
Javadocs for SharedResourceObject for details on this. The UimaAcronymAnnotator then
accesses the data through the St ri ngMapResour ce interface. This single instance could be
shared among multiple annotators, as will be explained later. Because of this, you should
insure your implementation is thread-safe, as it could be called multiple times on multiple
threads.

Note that all resource implementation classes (e.g. StringMapResource_impl in the
provided example) must be declared public must not be declared abstract, and must
have public, 0-argument constructors, so that they can be instantiated by the framework.
(Although Java classes in which you do not define any constructor will, by default, have
a 0-argument constructor that doesn't do anything, a class in which you have defined at
least one constructor does not get a default 0-argument constructor.)

All resource implementation classes that provide access to resource data must also
implement the interface org.apache.uima.resource.SharedResourceObject. The UIMA
Framework will invoke this interface's only method, | oad, after this object has been
instantiated. The implementation of this method can then read data from the specified
Dat aResour ce and use that data to initialize this object.

This annotator is illustrated in Figure 1.3, “External Resource Binding” [38]. To

see it in action, just run it using the Document Analyzer. When it finishes, open up the
UIMA_Seminars document in the processed results window, (double-click it), and then
left-click on one of the highlighted terms, to see the expandedForm feature's value.

UIMA Version 2.3.0 Annotator & AE Developer's Guide 37

Accessing External Resource Files

UimaAcronymAnnotator

(Resource: “AcronymTable”) UimaAcronym

—

External Resource Binding:
] UimaAcronymTableFile

UimaAcronyms.ixt

Figure 1.3. External Resource Binding

By designing our annotator in this way, we have gained some flexibility. We can

freely replace the StringMapResource_impl class with any other implementation that
implements the simple StringMapResource interface. (For example, for very large
resources we might not be able to have the entire map in memory.) We have also made our
external resource dependencies explicit in the descriptor, which will help others to deploy
our annotator.

1.5.4.4. Sharing Resources among Annotators

Another advantage of the Resource Manager is that it allows our data to be shared
between annotators. To demonstrate this we have developed another annotator that

will use the same acronym table. The UimaMeeting Annotator will iterate over Meeting
annotations discovered by the Meeting Detector we previously developed and attempt to
determine whether the topic of the meeting is related to UIMA. It will do this by looking
for occurrences of UIMA acronyms in close proximity to the meeting annotation. We
could implement this by using the UimaAcronymAnnotator, of course, but for the sake of
this example we will have the UimaMeetingAnnotator access the acronym map directly.

The Java code for the UimaMeetingAnnotator in example 6 creates a new type,
UimaMeeting, if it finds a meeting within 50 characters of the UIMA acronym.

We combine three analysis engines, the UimaAcronymAnnotator to annotate UIMA
acronyms, the MeetingDectector from example 4 to find meetings and finally the
UimaMeetingAnnotator to annotate just meetings about UIMA. Together these are
assembled to form the new aggregate analysis engine, UimaMeetingDectector. This
aggregate and the sharing of a common resource are illustrated in Figure 1.4, “Component
engines of an aggregate share a common resource” [39].

38

Annotator & AE Developer's Guide UIMA Version 2.3.0

Accessing External Resource Files

UimaAcronym UimaAcronym, Meeting

UIMAMeetingDetectorTAE = _

UimaAcronymAnnotator MeetingDetectorTAE UimaMeetingAnnotator UimaAcronym,
(Resource: “AcronymTable”) (Requires: Meeting) = UimaMeeting
) = - ”
. (Resource: “UimaTermTable —
External Resource Binding: External Resource Binding:
UimaAcronymTableFile UimaAcronymTableFile
5 z_

UimaAcronyms.txt

Figure 1.4. Component engines of an aggregate share a common resource

The important thing to notice is in the Ui maMeet i ngDet ect or AE. xnl aggregate
descriptor. It includes both the UimaMeeting Annotator and the UimaAcronymAnnotator,
and contains a single declaration of the UimaAcronymTableFile resource. (The actual
example has the order of the first two annotators reversed versus the above picture, which
is OK since they do not depend on one another).

It also binds the resources as follows:

B UimaMeetingDetectorTAE. xml 53 =l
|UimaMeetingDetectorTAE. xml

Resources

+ Resources Needs, Definitions and Bindings

Specify External Resources; Bind them to dependencies on the right panel by selecting the corresponding dependency
and dlicking Bind.

= UimaAcronymTableFile URL: file:orgfapache fuima ftutorialfext fuimadcronyms. bt Implementatinn:.
Bound to: UimaAcronymAnnotator /AcronymTable
Bound to: UimaMeetingAnnotator UimaTermTable

¥ Tmnorts for Frternal Resonrces and Rindinns

+ Resource Dependencies

Primitives declare what resources they need, A primitive can only bind to one external resource.

Bound | Optional? | Keys Interface Mame

Bound required UimaMeetingAnnotator UimaTermTable org.apache.uima. tutorial. exé. StringMapResource
Bound reguired UimaAcronymAnnotator/AcronymTable org.apache uima.tutorial. exs.StringMapResource

lilw'er'u'iv.=.'.-"\' . Aggregat& . Parameters . ii‘araméter éetﬁngs ﬂpe éystem | Cap..ab.illiﬁes ' fnﬂexes | Resources | énurce '

UIMA Version 2.3.0 Annotator & AE Developer's Guide 39

Result Specifications

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>Ui maAcr onymAnnot at or / Acr onynirabl e</ key>
<r esour ceNanme>Ui maAcr onyniabl eFi | e</ r esour ceNanme>
</ ext er nal Resour ceBi ndi ng>

<ext er nal Resour ceBi ndi ng>
<key>Ui maMeet i ngAnnot at or / Ui maTer mrabl e</ key>
<r esour ceNane>Ui maAcr onyniabl eFi | e</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>

This binds the resource dependencies of both the UimaAcronymAnnotator (which uses
the name AcronymTable) and UimaMeeting Annotator (which uses UimaTermTable) to
the single declared resource named UimaAcronymFile. Therefore they will share the same
instance. Resource bindings in the aggregate descriptor override any resource declarations
in individual annotator descriptors.

If we wanted to have the annotators use different acronym tables, we could easily do that.
We would simply have to change the resourceName elements in the bindings so that they
referred to two different resources. The Resource Manager gives us the flexibility to make
this decision at deployment time, without changing any Java code.

1.5.4.5. Threading and Shared Resources

Sharing can also occur when multiple instances of an annotator are created by the
framework in response to run-time deployment specifications. If an implementation
class is specified in the external resource, only one instance of that implementation class
is created for a given binding, and is shared among all annotators. Because of this, the
implementation of that shared instance must be written to be thread-safe - that is, to
operate correctly when called at arbitrary times by multiple threads. Writing thread-
safe code in Java is addressed in several books, such as Brian Goetz's Java Concurrency in
Practice.

If no implementation class is specified, then the getResource method returns a
DataResource object, from which each annotator instance can obtain their own (non-
shared) input stream; so threading is not an issue in this case.

1.5.5.

Result Specifications

The Result Specification is passed to the annotator instance by calling its
setResultSpecificaiton method. When called, the default implementation saves the result
specification in an instance variable of the Annotator instance, which can be accessed by
the annotator using the protected get Resul t Speci fi cati on() method.

A Result Specification is a list of output types and / or type:feature names, catagorized
by language(s), which are expected to be output from (produced by) the annotator.
Annotators may use this to optimize their operations, when possible, for those cases

40

Annotator & AE Developer's Guide UIMA Version 2.3.0

Result Specifications

where only particular outputs are wanted. The interface to the Result Specification object
(see the Javadocs) allows querying both types and particular features of types.

The languages specifications used by Result Specifications are the same that are
specifiable in Capability Specifications; examples include "en" for English, "en-uk" for
British English, etc. There is also a language type, "x-unspecified", which is presumed if no
language specification(s) are given.

Result Specifications can be queryed by the Annotator code, and the query may include
the language. If it doesn't include the language, it is treated as if the language "x-
unspecified" was specified. Language matching is hierarchically defaulted, in one
direction: if a query asks about a type T for language "en-uk", it will match for languages
"en-uk", "en", or "x-unspecified". However the reverse is not true: If the query asks about
a type T for language "x-unspecified", then it only matches Result Specifications with no
language (or "x-unspecified", which is equivalent).

The effect of this is that if the Result Specification indicates it wants output produced for
"en-uk", but the annotator is given a language which is unknown, or one that is known,
but isn't "en-uk", then the query (using the language of the document) will return false.
This is true even if the language is "en". However, if the Result Specification indicates

it wants output for "en", and the query is for "en-uk" (presumably because that's the
language of the document and the annotator can handle that especially well), then the
query will return true.

Sometimes you can specify the Result Specification; othertimes, you cannot (for instance,
inside a Collection Processing Engine, you cannot). When you cannot specify it, or choose
not to specify it (for example, using the form of the process(...) call on an Analysis Engine
that doesn't include the Result Specification), a “Default” Result Specification is used.

1.5.5.1. Default ResultSpecification

The default Result Specification is taken from the Engine's output Capability Specification.
Remember that a Capability Specification has both inputs and outputs, can specify

types and / or features, and there can be more than one Capability Set. If there is more
than one set, the logical union by language of these sets is used. Each set can have a
different "language(s)" specified; the default Result Specification will have the outputs

by language(s), so that the annotator can query which outputs should be provided for
particular languages. The methods to query the Result Specification take a type and
(optionally) a feature, and optionally, a language. If the queried type is a subtype of

some otherwise matching type in the Result Specification, it will match the query. See the
Javadocs for more details on this.

1.5.5.2. Passing Result Specifications to Annotators

If you are not using a Collection Processing Engine, you can specify
a Result Specification for your AnalysisEngine(s) by calling the
Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) method.

UIMA Version 2.3.0 Annotator & AE Developer's Guide 41

Class path setup when using JCas

It is also possible to pass a Result Specification on each call to

Anal ysi sEngi ne. process(CAS, Resul t Specification). However,

this is not recommended if your Result Specification will stay constant

across multiple calls to pr ocess. In that case it will be more efficient to call

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) only when the
Result Specification changes.

For primitive Analysis Engines, whatever Result Specification you pass in is passed along
to the annotator's set Resul t Speci fi cati on(Resul t Speci fi cati on) method. For
aggregate Analysis Engines, see below.

1.5.5.3. Aggregates

For aggregate engines, the Result Specification passed to the

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) method is
intended to specify the set of output types/features that the aggregate should produce.
This is not necessarily equivalent to the set of output types/features that each annotator
should produce. For example, an annotator may need to produce an intermediate type
that is then consumed by a downstream annotator, even though that intermediate type is
not part of the Result Specification.

To handle this situation, when

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) is called on an
aggregate, the framework computes the union of the passed Result Specification with
the set of all input types and features of all component AnalysisEngines within that
aggregate. This forms the complete set of types and features that any component of
the aggregate might need to produce. This derived Result Specification is then passed
to the Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) of each
component AnalysisEngine. In the case of nested aggregates, this procedure is applied
recursively.

1.5.5.4. Collection Proessing Engines

The Default Result Specification is always used for all components of a Collection
Processing Engine.

1.5.6. Class path setup when using JCas

JCas provides Java classes that correspond to each CAS type in an application. These
classes are generated by the JCasGen utility (which can be automatically invoked from the
Component Descriptor Editor).

The Java source classes generated by the JCasGen utility are typically compiled and
packaged into a JAR file. This JAR file must be present in the classpath of the UIMA
application.

For more details on issues around setting up this class path, including deployment issues
where class loaders are being used to isolate multiple UIMA applications inside a single

42

Annotator & AE Developer's Guide UIMA Version 2.3.0

Using the Shell Scripts

running Java Virtual Machine, please see Section 5.6.6, “Class Loaders in UIMA” in UIMA
References .

1.5.7. Using the Shell Scripts

The SDK includes a / bi n subdirectory containing shell scripts, for Windows (.bat files)
and Unix (.sh files). Many of these scripts invoke sample Java programs which require
a class path; they call a common shell script, set Ui maCl assPat h to set up the UIMA
required files and directories on the class path.

If you need to include files on the class path, the scripts will add anything you specify

in the environment variables CLASSPATH or UIMA_CLASSPATH to the classpath. So,
for example, if you are running the document analyzer, and wanted it to find a Java class
file named (on Windows) c:\a\b\ c\myProject\ my]JarFile.jar, you could first issue a set
command to set the UIMA_CLASSPATH to this file, followed by the documentAnalyzer
script:

set U MA_CLASSPATH=c:\ a\ b\ c\ nyProj ect\myJdarFile.jar
docunent Anal yzer

Other environment variables are used by the shell scripts, as follows:

Table 1.1. Environment variables used by the shell scripts

Environment Variable Description
UIMA_HOME Path where the UIMA SDK was installed.
JAVA_HOME (Optional) Path to a Java Runtime

Environment. If not set, the Java JRE that is
in your system PATH is used.

UIMA_CLASSPATH (Optional) if specified, a path specification
to use as the default ClassPath. You can
also set the CLASSPATH variable. If you
set both, they will be concatenated.

UIMA_DATAPATH (Optional) if specified, a path specification
to use as the default DataPath (see
Section 2.2, “Imports” in UIMA References)

UIMA_LOGGER_CONFIG_FILE (Optional) if specified, a path to a Java
Logger properties file (see Section 1.2,
“Configuration and Logging” [14])

UIMA_JVM_OPTS (Optional) if specified, the JVM arguments
to be used when the Java process is started.
This can be used for example to set the

UIMA Version 2.3.0 Annotator & AE Developer's Guide 43

../references/references.pdf#ugr.ref.jcas.class_loaders
../references/references.pdf#ugr.ref.xml.component_descriptor.datapath

Common Pitfalls

Environment Variable Description

maximum Java heap size or to define
system properties.

VNS_PORT (Optional) if specified, the network IP port
number of the Vinci Name Server (VNS)

(see Section 3.6.5, “The Vinci Naming
Services (VNS)” [100])

ECLIPSE_HOME (Optional) Needs to be set to the root
of your Eclipse installation when using
shell scripts that invoke Eclipse (e.g.
jcasgen_merge)

1.6. Common Pitfalls

Here are some things to avoid doing in your annotator code:
Retaining references to JCas objects between calls to process()

The JCas will be cleared between calls to your annotator's process() method. All of the
analysis results related to the previous document will be deleted to make way for analysis
of a new document. Therefore, you should never save a reference to a JCas Feature
Structure object (i.e. an instance of a class created using JCasGen) and attempt to reuse it
in a future invocation of the process() method. If you do so, the results will be undefined.

Careless use of static data

Always keep in mind that an application that uses your annotator may create multiple
instances of your annotator class. A multithreaded application may attempt to use two
instances of your annotator to process two different documents simultaneously. This will
generally not cause any problems as long as your annotator instances do not share static
data.

In general, you should not use static variables other than static final constants of
primitive data types (String, int, float, etc). Other types of static variables may allow one
annotator instance to set a value that affects another annotator instance, which can lead
to unexpected effects. Also, static references to classes that aren't thread-safe are likely to
cause errors in multithreaded applications.

1.7. Viewing UIMA objects in the Eclipse debugger

Eclipse (as of version 3.1 or later) has a new feature for viewing Java Logical Structures.
When enabled, it will permit you to see a view of UIMA objects (such as feature structure
instances, CAS or JCas instances, etc.) which displays the logical subparts. For example,
here is a view of a feature structure for the RoomNumber annotation, from the tutorial
example 1:

44

Annotator & AE Developer's Guide UIMA Version 2.3.0

Analysis Engine XML Descriptor

|69= Variables ¢ . Breakpoints | Expressions £ 5% =0
Mame Value
F @ this org.apache.uima. tutorial. ex 1. RoomMumber Annotator @ 1a0d253b
® @ alCas org.apache.uima.jcas.impl. JCasImpl @3a99653F
O docText UIT Seminar: Challenges in Speech Recognition'n August 8, 2003 10:30 AM - 11:30 A,
& matcher java.util.regex.Matcher@25fe53c
= annotation RoomMumbern sofa: _InitialView'n begin: 203\ end: 209%n buiding: “Yorktown™n
< addr 21
I+ {;chasType org.apache. uima. tutorial. RoomMumber_Type@5atce533

The “annotation” object in Java shows as a 2 element object, not very convenient for seeing
the features or the part of the input that is being annotatoed. But if you turn on the Java
Logical Structure mode by pushing this button:

the features of the FeatureStructure instance will be shown:

| 9= variablez 7 Breakpoints | Expressions '-‘fE| =T Tm
Mame Value
F @ this org.apache.uima. tutorial. ex 1. RoomMumber Annotator @1a0d 253b
&= & alCas org.apache.uima.jcas.impl. JCasImpl@3a99653f
@ docText UIT Seminar: Challenges in Speech Recognition'n August 8, 2003 10:30 AM - 11:30 A...
® O matcher java.util regex. Matcher @25fe53c
= ¢ annotation RoomMumber'n sofa: _InitialView'n begin: 203% end: 209 building: "Yerktown™n
= & [0] Features: [Lorg.apache.uima.cas.impl. DebughMameValuePair; @1126538
® & [0] sofa: Sofaln sofaMum: 1% sofalD: "_Initialview™n mimeType: “text™n sofadrray: ...
H & [1] begin: 203
H & [7] end: 209
F & [3] building: Yorktown
H & [1] Covered Text: 20-043
H a [2] SubAnnotations: Expand to show

1.8. Introduction to Analysis Engine Descriptor XML
Syntax

This section is an introduction to the syntax used for Analysis Engine Descriptors. Most
users do not need to understand these details; they can use the Component Descriptor
Editor Eclipse plugin to edit Analysis Engine Descriptors rather than editing the XML
directly.

This section walks through the actual XML descriptor for the RoomNumberAnnotator
example introduced in section Section 1.1, “Getting Started” [2]. The discussion is
divided into several logical sections of the descriptor.

The full specification for Analysis Engine Descriptors is defined in Chapter 2, Component
Descriptor Reference in UIMA References .

UIMA Version 2.3.0 Annotator & AE Developer's Guide 45

../references/references.pdf#ugr.ref.xml.component_descriptor
../references/references.pdf#ugr.ref.xml.component_descriptor

Header and Annotator Class Identification

1.8.1. Header and Annotator Class Identification

<?xm version="1.0" encodi ng="UTF-8" ?>
<I-- Descriptor for the exanpl e RoomNunmber Annotator. -->
<anal ysi seEngi neDescri ption xm ns="http://ui ma. apache. or g/ resourceSpecifier">
<f ramewor k|l npl ement at i on>or g. apache. ui ma. j ava</ f ranewor kl npl enent at i on>
<primtive>true</primtive>
<annot at or | npl enent at i onNanme>
org. apache. ui ma. tutori al . ex1. RoomNunber Annot at or
</ annot at or | npl enent at i onNane>

The document begins with a standard XML header and a comment. The root element of
the document is named <anal ysi sEngi neDescri pti on>, and must specify the XML
namespace http://ui ma. apache. or g/ resour ceSpeci fier.

The first subelement, <f r amewor kI npl enent at i on>, must contain the value

or g. apache. ui ma. j ava. The second subelement, <pri ni ti ve>, contains the Boolean
value true, indicating that this XML document describes a Primitive Analysis Engine.

A Primitive Analysis Engine is comprised of a single annotator. It is also possible to
construct XML descriptors for non-primitive or Aggregate Analysis Engines; this is covered
later.

The next element, <annot at or | npl ement at i onNane>, contains the fully-qualified
class name of our annotator class. This is how the UIMA framework determines which
annotator class to instantiate.

1.8.2. Simple Metadata Attributes

<anal ysi sengi neMet aDat a>
<nanme>Room Nunber Annot at or </ nane>
<descri pti on>An exanpl e annotator that searches for room nunbers in
the | BM WAt son research buil di ngs. </ descri pti on>
<ver si on>1. 0</ ver si on>
<vendor >The Apache Software Foundati on</vendor ></ par a>

Here are shown four simple metadata fields — name, description, version, and vendor.
Providing values for these fields is optional, but recommended.

1.8.3. Type System Definition

<t ypeSyst enDescri pti on>
<i nport s>
<inport | ocation="Tutorial TypeSystem xm "/>
</inports>
</ typeSyst enDescri pti on>

This section of the XML descriptor defines which types the annotator works with. The
recommended way to do this is to import the type system definition from a separate file, as

46

Annotator & AE Developer's Guide UIMA Version 2.3.0

Capabilities

shown here. The location specified here should be a relative path, and it will be resolved
relative to the location of the aggregate descriptor. It is also possible to define types
directly in the Analysis Engine descriptor, but these types will not be easily shareable by
others.

1.8.4. Capabilities

<capabilities>
<capability>
<i nputs />
<out put s>
<t ype>or g. apache. ui ma. tut ori al . RoomNunber </ t ype>
<f eat ur e>or g. apache. ui ma. t ut ori al . RoomNunber : bui | di ng</f eat ur e>
</ out put s>
</ capability>
</ capabilities>

The last section of the descriptor describes the Capabilities of the annotator — the Types/
Features it consumes (input) and the Types/Features that it produces (output). These must
be the names of types and features that exist in the ANALYSIS ENGINE descriptor's type
system definition.

Our annotator outputs only one Type, RoomNumber and one feature,
RoomNumber:building. The fully-qualified names (including namespace) are needed.

The building feature is listed separately here, but clearly specifying every feature for a
complex type would be cumbersome. Therefore, a shortcut syntax exists. The <outputs>
section above could be replaced with the equivalent section:

<out put s>
<type al |l Annot at or Features ="true">
org. apache. ui ma. tut ori al . RoomNunber
</type>
</ out put s>

1.8.5. Configuration Parameters (Optional)

1.8.5.1. Configuration Parameter Declarations

<confi gurati onPar anet er s>

<confi gurati onPar anmet er >
<nanme>Pat t er ns</ nanme>
<descri ption>Li st of room nunber regul ar expression patterns.
</ descri pti on>
<type>String</type>
<mul ti Val ued>t rue</ nul ti Val ued>
<mandat or y>t r ue</ mandat or y>

</ confi gur ati onPar anet er >

<confi gurati onPar anmet er >

UIMA Version 2.3.0 Annotator & AE Developer's Guide 47

Configuration Parameters (Optional)

<nane>Locat i ons</ nane>

<descri ption>Li st of |ocations corresponding to the room nunber

expressions specified by the Patterns paraneter.

</ descri pti on>
<type>String</type>
<mul ti Val ued>t rue</ nul ti Val ued>
<mandat or y>t r ue</ mandat or y>
</ confi gur ati onPar anet er >
</ confi gurati onPar anet er s>

The <conf i gur at i onPar amet er s> element contains the definitions of the configuration
parameters that our annotator accepts. We have declared two parameters. For each

configuration parameter, the following are specified:

* name - the name that the annotator code uses to refer to the parameter

¢ description — a natural language description of the intent of the parameter

* type — the data type of the parameter's value — must be one of String, Integer, Float,

or Boolean.

* multiValued - true if the parameter can take multiple-values (an array), false if the

parameter takes only a single value.

* mandatory — true if a value must be provided for the parameter

Both of our parameters are mandatory and accept an array of Strings as their value.

1.8.5.2. Configuration Parameter Settings

<confi gurati onPar anmet er Setti ngs>
<naneVal uePai r >
<nanme>Pat t er ns</ nanme>
<val ue>
<array>
<string>b[0-4]d-[0-2]ddb</string>
<string>b[G1l-4] [NS] - [A- Z] ddb</ stri ng>
<string>bJ[12] - [A- Z] ddb</stri ng>
</ array>
</val ue>
</ nanmeVal uePai r >
<naneVal uePai r >
<name>Locat i ons</ name>
<val ue>
<array>
<string>Watson - Yorktown</string>
<string>Watson - Hawt horne | </string>
<string>Watson - Hawt horne I1</string>
</ array>
</ val ue>
</ naneVal uePai r >

48 Annotator & AE Developer's Guide

UIMA Version 2.3.0

Configuration Parameters (Optional)

</ confi gurati onPar anet er Setti ngs>

1.8.5.3. Aggregate Analysis Engine Descriptor

<?xm version="1.0" encodi ng="UTF-8" ?>

<anal ysi sengi neDescri pti on xm ns="http://ui ma. apache. org/ resour ceSpecifier">
<f ramewor kl npl ement at i on>or g. apache. ui ma. j ava</f r anewor kI npl enent at i on>
<primtive>false</primtive>

<del egat eAnal ysi sEngi neSpeci fi er s>
<del egat eAnal ysi sEngi ne key="RoomNunber" >
<inmport |ocation="../ex2/ RoomNunber Annot at or.xm "/ >
</ del egat eAnal ysi sengi ne>
<del egat eAnal ysi sengi ne key="Dat eTi ne">
<inport | ocation="Tutorial DateTine.xm" />
</ del egat eAnal ysi sengi ne>
</ del egat eAnal ysi sEngi neSpeci fi ers>

The first difference between this descriptor and an individual annotator's descriptor is

that the <pri mi ti ve> element contains the value f al se. This indicates that this Analysis

Engine (AE) is an aggregate AE rather than a primitive AE.

Then, instead of a single annotator class name, we have a list of
del egat eAnal ysi sEngi neSpeci fi ers. Each specifies one of the components that

constitute our Aggregate . We refer to each component by the relative path from this XML

descriptor to the component AE's XML descriptor.

This list of component AEs does not imply an ordering of them in the execution pipeline.

Ordering is done by another section of the descriptor:

<anal ysi sEngi neMet aDat a>
<name>Aggr egate AE - Room Nunber and Dat eTi me Annot at or s</ nane>
<descri pti on>Det ects Room Nunbers, Dates, and Ti mes</description>
<f | owConst rai nt s>
<fi xedFl ow>
<node>RoomN\unber </ node>
<node>Dat eTi ne</ node>
</ fi xedFl ow>
</ fl owConst r ai nt s>

Here, a fixedFlow is adequate, and we specify the exact ordering in which the AEs will
be executed. In this case, it doesn't really matter, since the RoomNumber and DateTime
annotators do not have any dependencies on one another.

Finally, the descriptor has a capabilities section, which has exactly the same syntax as a
primitive AE's capabilities section:

<capabilities>

<capability>

<inputs />
<out put s>

UIMA Version 2.3.0 Annotator & AE Developer's Guide

49

Configuration Parameters (Optional)

<type al | Annot at or Feat ures="true" >
org. apache. ui ma. tut ori al . RoomN\unber
</type>
<type al | Annot at or Feat ures="true" >
or g. apache. ui ma. tut ori al . Dat eAnnot
</type>
<type al | Annot at or Feat ures="true" >
or g. apache. ui ma. tutori al . Ti neAnnot
</type>
</ out put s>
<l anguagesSupport ed>
<l anguage>en</ | anguage>
</ | anguagesSupport ed>
</capability>
</ capabilities>

50

Annotator & AE Developer's Guide

UIMA Version 2.3.0

Chapter 2. Collection Processing Engine
Developer's Guide

The UIMA Analysis Engine interface provides support for developing and integrating
algorithms that analyze unstructured data. Analysis Engines are designed to operate

on a per-document basis. Their interface handles one CAS at a time. UIMA provides
additional support for applying analysis engines to collections of unstructured data

with its Collection Processing Architecture. The Collection Processing Architecture defines
additional components for reading raw data formats from data collections, preparing

the data for processing by Analysis Engines, executing the analysis, extracting analysis
results, and deploying the overall flow in a variety of local and distributed configurations.

The functionality defined in the Collection Processing Architecture is implemented by

a Collection Processing Engine (CPE). A CPE includes an Analysis Engine and adds a
Collection Reader, a CAS Initializer (deprecated as of version 2), and CAS Consumers. The
part of the UIMA Framework that supports the execution of CPEs is called the Collection
Processing Manager, or CPM.

A Collection Reader provides the interface to the raw input data and knows how to iterate
over the data collection. Collection Readers are discussed in Section 2.4.1, “Developing
Collection Readers” [59]. The CAS Initializer ! prepares an individual data item

for analysis and loads it into the CAS. CAS Initializers are discussed in Section 2.4.2,
“Developing CAS Initializers” [66] A CAS Consumer extracts analysis results from the
CAS and may also perform collection level processing, or analysis over a collection of CASes.
CAS Consumers are discussed in Section 2.4.3, “Developing CAS Consumers” [66].

Analysis Engines and CAS Consumers are both instances of CAS Processors. A Collection
Processing Engine (CPE) may contain multiple CAS Processors. An Analysis Engine
contained in a CPE may itself be a Primitive or an Aggregate (composed of other Analysis
Engines). Aggregates may contain Cas Consumers. While Collection Readers and CAS
Initializers always run in the same JVM as the CPM, a CAS Processor may be deployed

in a variety of local and distributed modes, providing a number of options for scalability
and robustness. The different deployment options are covered in detail in Section 2.5,
“Deploying a CPE” [70].

Each of the components in a CPE has an interface specified by the UIMA Collection
Processing Architecture and is described by a declarative XML descriptor file. Similarly,
the CPE itself has a well defined component interface and is described by a declarative
XML descriptor file.

A user creates a CPE by assembling the components mentioned above. The UIMA
SDK provides a graphical tool, called the CPE Configurator, for assisting in the
assembly of CPEs. Use of this tool is summarized in Section 2.2.1, “Using the CPE
Configurator” [53], and more details can be found in Chapter 2, Collection Processing

CAS Initializers are deprecated in favor of a more general mechanism, multiple subjects of analysis.

CPE Developer's Guide 51

../tools/tools.pdf#ugr.tools.cpe

CPE Concepts

Engine Configurator User’s Guide in UIMA Tools Guide and Reference. Alternatively, a CPE
can be assembled by writing an XML CPE descriptor. Details on the CPE descriptor,
including its syntax and content, can be found in the Chapter 3, Collection Processing
Engine Descriptor Reference in UIMA References. The individual components have associated
XML descriptors, each of which can be created and / or edited using the Component
Description Editor in UIMA Tools Guide and Reference.

A CPE is executed by a UIMA infrastructure component called the Collection Processing
Manager (CPM). The CPM provides a number of services and deployment options that
cover instantiation and execution of CPEs, error recovery, and local and distributed
deployment of the CPE components.

2.1. CPE Concepts

Figure 2.1, “CPE Components” [52] illustrates the data flow that occurs between the
different types of components that make up a CPE.

Entity Entity + CAS .
Collections Collection| (e.g. Document) CAS iy AEn:g:és
& Meta data Reader Initializer (adds to CAS)
Entity + CAS
*Manages Processing J J l
*Monitors Status CAS Consumer CAS Consumer CAS Consumer

(builds aggregate
data structure)

o

(builds aggregate

«Collects Statistics (builds aggregate
data structure)

data structure)

Glossary

Glossary Extractor rEsr

(Kinds of CAS Consumers)

Figure 2.1. CPE Components

The components of a CPE are:

* Collection Reader — interfaces to a collection of data items (e.g., documents) to be
analyzed. Collection Readers return CASes that contain the documents to analyze,
possibly along with additional metadata.

* Analysis Engine — takes a CAS, analyzes its contents, and produces an enriched CAS.
Analysis Engines can be recursively composed of other Analysis Engines (called an
Aggregate Analysis Engine). Aggregates may also contain CAS Consumers.

52 CPE Developer's Guide UIMA Version 2.3.0

../tools/tools.pdf#ugr.tools.cpe
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../tools/tools.pdf#ugr.tools.cde
../tools/tools.pdf#ugr.tools.cde

CPE Configurator and CAS viewer

* CAS Consumer — consume the enriched CAS that was produced by the sequence of
Analysis Engines before it, and produce an application-specific data structure, such
as a search engine index or database.

A fourth type of component, the CAS Initializer, may be used by a Collection Reader to
populate a CAS from a document. However, as of UIMA version 2 CAS Initializers are
now deprecated in favor of a more general mechsanism, multiple Subjects of Analysis.

The Collection Processing Manager orchestrates the data flow within a CPE, monitors
status, optionally manages the life-cycle of internal components and collects statistics.

CASes are not saved in a persistent way by the framework. If you want to save CASes,
then you have to save each CAS as it comes through (for example) using a CAS Consumer
you write to do this, in whatever format you like. The UIMA SDK supplies an example
CAS Consumer to save CASes to XML files, either in the standard XMI format or in

an older format called XCAS. It also supplies an example CAS Consumer to extract
information from CASes and store the results into a relational Database, using Java's JDBC
APIs.

2.2. CPE Configurator and CAS viewer

2.2.1. Using the CPE Configurator

A CPE can be assembled by writing an XML CPE descriptor. Details on the CPE
descriptor, including its syntax and content, can be found in Chapter 3, Collection
Processing Engine Descriptor Reference in UIMA References. Rather than edit raw XML, you
may develop a CPE Descriptor using the CPE Configurator tool. The CPE Configurator
tool is described briefly in this section, and in more detail in Chapter 2, Collection
Processing Engine Configurator User’s Guide in UIMA Tools Guide and Reference.

The CPE Configurator tool can be run from Eclipse (see Section 2.2.2, “Running the CPE
Configurator from Eclipse” [57], or using the cpeGui shell script (cpeCGui . bat on
Windows, cpeGui . sh on Unix), which is located in the bi n directory of the UIMA SDK
installation. Executing this batch file will display the window shown here:

UIMA Version 2.3.0 CPE Developer's Guide 53

../references/references.pdf#ugr.ref.xml.cpe_descriptor
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../tools/tools.pdf#ugr.tools.cpe
../tools/tools.pdf#ugr.tools.cpe

Using the CPE Configurator

R Colecton Processing Enging Configurator SO

File W¥iew Help
ﬁl Unstructured Information Management Architecture
A Apache enbater Prajest.

i Hi |

Calection Reader

Anakhesis Engines

() =) (=)

CAS Consumers

Lot e)

1:7 @EBE‘

alzed

The window is divided into three sections, one each for the Collection Reader, Analysis
Engines, and CAS Consumers.? In each section, you select the component(s) you want to
include in the CPE by browsing to their XML descriptors. The configuration parameters
present in the XML descriptors will then be displayed in the GUI; these can be modified
to override the values present in the descriptor. For example, the screen shot below shows
the CPE Configurator after the following components have been chosen:

Col | ecti on Reader:
o%JI MVA_HOVEY exanpl es/ descri ptors/col | ecti on_reader/
Fi | eSyst entCol | ect i onReader . xm

Anal ysi s Engi ne:
%J MA_HOVEY4 exanpl es/ descri pt or s/ anal ysi s_engi ne/
NamesAndPer sonTi t | es_TAE. xmi

CAS Consuner:
%J MA_HOVE% exanpl es/ descri pt ors/ cas_consuner/

*There is also a fourth pane, for the CAS Initializer, but it is hidden by default. To enable it click the Vi ew - CAS
Initializer Panel menuitem.

54 CPE Developer's Guide UIMA Version 2.3.0

Using the CPE Configurator

Xm Wit erCasConsuner. xni

A Collection Processing Engine Configurator B

Tl vew Help
Desooptor: | \RlesystemCalectionReadsr.

Inpat Cirectoryt | Cajyspache-uinalexamplesidats
Encoding:

Language:

Unstructured Information Management Architecture

An Apache morbhaior Projeci.

Collection Reader

Analysis Engines

[.d.dcl... ” £<]l 23 |

|z| Agoregate TAE = Name Recognizer and Person Tithe Anmotator

CAS Consumers

[aod.. |[<=][2> |

(5 e oriter CAS Carumer |

Quiput Directonys cy\pampluisna)ri_oupu

E (B n| m

ritiabzed

For the File System Collection Reader, ensure that the Input Directory is set to

%0 MA_HOVE% exanpl es\ dat a°. The other parameters may be left blank. For the External
CAS Writer CAS Consumer, ensure that the Output Directory is set to %J MA_HOVE%

\ exanpl es\ dat a\ pr ocessed.

After selecting each of the components and providing configuration settings, click the play
(forward arrow) button at the bottom of the screen to begin processing. A progress bar
should be displayed in the lower left corner. (Note that the progress bar will not begin to
move until all components have completed their initialization, which may take several
seconds.) Once processing has begun, the pause and stop buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes
successfully, you will be presented with a performance report.

Using the File menu, you can select Save CPE Descri ptor to create an .xml descriptor
tile that defines the CPE you have constructed. Later, you can use Qpen CPE Descri pt or

*Replace %)l MA_HOMEY%owith the path to where you installed UIMA.

UIMA Version 2.3.0 CPE Developer's Guide 55

Using the CPE Configurator

to restore the CPE Configurator to the saved state. Also, CPE descriptors can be used to
run a CPE from a Java program — see section Section 2.3, “Running a CPE from Your Own
Java Application” [58]. CPE Descriptors allow specifying operational parameters, such

as error handling options, that are not currently available for configuration through the
CPE Configurator. For more information on manually creating a CPE Descriptor, see the
Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References.

The CPE configured above runs a simple name and title annotator on the sample

data provided with the UIMA SDK and stores the results using the XMI Writer

CAS Consumer. To view the results, start the External CAS Annotation Viewer by
running the annot at i onVi ewer batch file (annot at i onVi ewer . bat on Windows,

annot ati onVi ewer . sh on Unix), which is located in the bi n directory of the UIMA SDK
installation. Executing this batch file will display the window shown here:

.

F-ﬁ Annotation Viewer g @@

File Help

-,;'f:'iz,l Unstructured Information Management Architecture
lI |

. An Apache Incubator Project.

Input Direckory: | Cikempiuima’zmi_oukput

Typedystem or AE Descriptar File: | Yanalysis_enginelMamesAndPersonTitles_TAE. xml

Ensure that the Input Directory is the same as the Output Directory specified for the
XMI Writer CAS Consumer in the CPE configured above (e.g., %J MA_HOVE% exanpl es
\ dat a\ pr ocessed) and that the TAE Descriptor File is set to the Analysis Engine

used in the CPE configured above (e.g., exanpl es\ descri pt or s\ anal ysi s_engi ne

\ NamesAndPer sonTi t | es_TAE. xm).

Click the View button to display the Analyzed Documents window:

-

ﬁ Analyzed Documents @

These are the Analyzed Documents.

Select viewer type and double-click file to apen.
@ IBM_LifeSciences txt

Mew 1BM_Fellows txt

[# SeminarChallengesinSpeechRecognition. txt
TrainahlelnformationExtractionSystems.txt
UIMASurmmerSchool2003 tet

[# UIbA_Seminars. txt
YWatsonConferenceRooms. txt

Results Display Format: (8) Java Viewer () HTML () ¥mL

Cloge

56

CPE Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Running the CPE Configurator from Eclipse

Double click on any document in the list to view the analyzed document. Double clicking
the first document, IBM_LifeSciences.txt, will bring up the following window:

i, "Life sciences is one of the emerging madkats ot the heart of IBMs growih strateqy.” said John i,] [Click In Test 1o S:‘“ #"'!“‘!31"?"! Datad |
Thompson, IBM sensor vice president & group executive, Scftware, "This vestment is the first of A Nl Cdohar M, Thompson) >
rumber of steps we will be taking o advance B life sciences infistves.” In his role as newly ® bagin =34

appoirded [BM Compearation vwce chaiman, efective September 1, M. Thompson will be responsible for & nd= 10
integrating and accelersting IBM's efforts to exploi Iife sciences and other emerging growth areas

IEM estirnates the market for [T solutions for life sciences will skyocket fom $3.5 billion today 1o
move than $9 bilon by 2003, Drving demand is the explosive growth in genomic, protessmic and
pharnaceutical reseanch. For example, the Human Genoeme Database iz approxenately thiee
terabytes of data, or the equivalent of 150 ralbon pages of mfeemation. The volume of 1fe sciences
data 15 doubling eviery S mordhs

Al of this genatic data is worhless without the information techndlogy that can help $caindists
manage and nnal‘,’zn i 10 urdock the prll!hm.:rs that wall lead 10 néw Curds Tor Ty of today's
diseases,” sad Dr Camline Kovag, wee pressdant of IBM's new Lifs Sciences unn. "IEM can help
speed this process by enabling more efficient inlerpretation of data and shanng of knowledge. The
potential for change based on innowation in life sciences is bigger than the change caused by the
digital circuit.”

Among the B sciences inftistives already undersay at IBM are

- DiscoweryLink™ — For the first time, researchers using this combination of innovative meddiewase and
imegration senrsces can joan logether information from many sources to sohe complex medical
research problems. DiscoveryLink creates a “vitual database” that permds data to be accessed and

extracted fram multiple data sources used in regearch and developrment projects. Thig IT soldion can sl

[Lagend
[JDacumenttnn... [+]Mame [+] ParsanTitle

[seecmn || Deselectan |

This window shows the analysis results for the document. Clicking on any highlighted
annotation causes the details for that annotation to be displayed in the right-hand pane.
Here the annotation spanning “John M. Thompson” has been clicked.

Congratulations! You have successfully configured a CPE, saved its descriptor, run the
CPE, and viewed the analysis results.

2.2.2. Running the CPE Configurator from Eclipse

If you have followed the instructions in Chapter 3, Setting up the Eclipse IDE to work with
UIMA in UIMA Overview & SDK Setup and imported the example Eclipse project, then you
should already have a Run configuration for the CPE Configurator tool (called U MA CPE
GUI) configured to run in the example project. Simply run that configuration to start the
CPE Configurator.

If you haven't followed the Eclipse setup instructions and wish to run the CPE
Configurator tool from Eclipse, you will need to do the following. As installed, this
Eclipse launch configuration is associated with the “uimaj-examples” project. If you've
not already done so, you may wish to import that project into your Eclipse workspace. It's
located in %UIMA_HOME%/docs/examples. Doing this will supply the Eclipse launcher
with all the class files it needs to run the CPE configurator. If you don't do this, please
manually add the JAR files for UIMA to the launch configuration.

UIMA Version 2.3.0 CPE Developer's Guide 57

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup

Running a CPE from Your Own Java Application

Also, you need to add any projects or JAR files for any UIMA components you will be
running to the launch class path.

Note: A simpler alternative may be to change the CPE launch configuration to
be based on your project. If you do that, it will pick up all the files in your project's
class path, which you should set up to include all the UIMA framework files. An
easy way to do this is to specify in your project's properties' build-path that the
uimaj-examples project is on the build path, because the uimaj-examples project is
set up to include all the UIMA framework classes in its classpath already.

Next, in the Eclipse menu select Run - Run...,, which brings up the Run configuration
screen.

In the Main tab, set the main class to or g. apache. ui ma. t ool s. cpm CpnFr ane

In the arguments tab, add the following to the VM arguments:

- Xms128M - Xnmx256M
- Dui ma. home="C: \ Program Fi | es\ Apache\ ui ma"

(or wherever you installed the UIMA SDK)

Click the Run button to launch the CPE Configurator, and use it as previously described
in this section.

2.3. Running a CPE from Your Own Java
Application

The simplest way to run a CPE from a Java application is to first create a CPE descriptor
as described in the previous section. Then the CPE can be instantiated and run using the
following code:

/I parse CPE descriptor in file specified on command |ine
CpeDescri ption cpeDesc = U MAFramewor k. get XM_Par ser () .
par seCpeDescri pti on(new XM.I nput Sour ce(args[0]));

/linstantiate CPE
nMCPE = Ul MAFr amewor k. pr oduceCol | ecti onPr ocessi ngEngi ne(cpeDesc) ;

// Create and register a Status Cal |l back Listener
NCPE. addSt at usCal | backLi st ener (new St at usCal | backLi stener | nmpl ());

/] Start Processing
mCPE. process() ;

This will start the CPE running in a separate thread.

58 CPE Developer's Guide UIMA Version 2.3.0

Using Listeners

Note: The process() method for a CPE can only be called once. If you need to
call it again, you have to instantiate a new CPE, and call that new CPE's process
method.

2.3.1. Using Listeners

Updates of the CPM's progress, including any errors that occur, are sent to the callback
handler that is registered by the call to addSt at usCal | backLi st ener, above. The
callback handler is a class that implements the CPM's St at usCal | backLi st ener
interface. It responds to events by printing messages to the console. The source

code is fairly straightforward and is not included in this chapter — see the

or g. apache. ui ma. exanpl es. cpe. Si npl eRUNCPE. j ava in the %I MA_HOVE% exanpl es
\ sr ¢ directory for the complete code.

If you need more control over the information in the CPE descriptor, you can manually
configure it via its APL See the Javadocs for package or g. apache. ui ma. col | ecti on for
more details.

2.4. Developing Collection Processing Components

This section is an introduction to the process of developing Collection Readers, CAS
Initializers, and CAS Consumers. The code snippets refer to the classes that can be found
in % MA_HOVE% exanpl es\ src example project.

In the following sections, classes you write to represent components need to be public and
have public, 0-argument constructors, so that they can be instantiated by the framework.
(Although Java classes in which you do not define any constructor will, by default, have

a 0-argument constructor that doesn't do anything, a class in which you have defined at
least one constructor does not get a default 0-argument constructor.)

2.4.1. Developing Collection Readers

A Collection Reader is responsible for obtaining documents from the collection and
returning each document as a CAS. Like all UIMA components, a Collection Reader
consists of two parts — the code and an XML descriptor.

A simple example of a Collection Reader is the “File System Collection Reader,” which
simply reads documents from files in a specified directory. The Java code is in the
class or g. apache. ui ma. exanpl es. cpe. Fi | eSyst enCol | ecti onReader and the XML
descriptor is %I MA_HOVE% exanpl es/ src/ mai n/ descri ptors/col | ecti on_reader/
Fi | eSyst enCol | ecti onReader . xmi .

2.4.1.1. Java Class for the Collection Reader

The Java class for a Collection Reader must implement the
org. apache. ui ma. col | ecti on. Col | ecti onReader interface. You may build your

UIMA Version 2.3.0 CPE Developer's Guide 59

Developing Collection Readers

Collection Reader from scratch and implement this interface, or you may extend the
convenience base class or g. apache. ui ma. col | ecti on. Col | ecti onReader _| npl Base .

The convenience base class provides default implementations for many of the methods
defined in the Col | ecti onReader interface, and provides abstract definitions for those
methods that you are required to implement in your new Collection Reader. Note that if
you extend this base class, you do not need to declare that your new Collection Reader

implements the Col | ecti onReader interface.

Tlp Eclipse tip — if you are using Eclipse, you can quickly create the
boiler plate code and stubs for all of the required methods by clicking Fi | e

— New — O ass to bring up the “New Java Class” dialogue, specifying

org. apache. ui ma. col | ecti on. Col | ecti onReader _| npl Base as the Superclass,
and checking “Inherited abstract methods” in the section “Which method stubs
would you like to create?”, as in the screenshot below:

"2 New Java Class

Java Class

Create a new lava dass.

Source folder: LEma = xamples/src
Package: org. apache.uime, exemples. cpe
[|Endesing type:
Hamqe: HewColecbon® eader
Modifiers: &) gublic) defayt
[abstract []final
Supercless: org.apache.uima, cofecton. CollectionReader_ImplBase
Interfaces:

Wihich method stubs would you ke o ceats?
[Jipuibic static void man(Strng(] args)
[[]constructors from supardass
[+] inherited abstract methods

[Jzenerate comments

Do you want to add comments as configured in the properiics of the current progect?

il [Finish

|| cenca |

For the rest of this section we will assume that your new Collection Reader extends
the Col | ect i onReader _| npl Base class, and we will show examples from the
or g. apache. ui ma. exanpl es. cpe. Fi | eSyst enCol | ecti onReader . If you must inherit

60

CPE Developer's Guide

UIMA Version 2.3.0

Developing Collection Readers

from a different superclass, you must ensure that your Collection Reader implements the
Col I ecti onReader interface — see the Javadocs for Col | ect i onReader for more details.

2.4.1.2. Required Methods in the Collection Reader class

The following abstract methods must be implemented:

initialize()
Theinitialize() method is called by the framework when the Collection Reader is first
created. Col | ect i onReader _| npl Base actually provides a default implementation of this
method (i.e., it is not abstract), so you are not strictly required to implement this method.

However, a typical Collection Reader will implement this method to obtain parameter
values and perform various initialization steps.

In this method, the Collection Reader class can access the values of its configuration
parameters and perform other initialization logic. The example File System Collection
Reader reads its configuration parameters and then builds a list of files in the specified
input directory, as follows:

public void initialize() throws Resourcelnitializati onException {
File directory = new Fil g(
(String)get Confi gPar anet er Val ue(PARAM_| NPUTDI R)) ;
nEncodi ng = (String)get Confi gPar anet er Val ue(PARAM_ENCODI NG) ;
mDocunent Text Xm TagName = (String) get Confi gPar anet er Val ue(PARAM XMLTAG) ;
mLanguage = (String)get Confi gParanet er Val ue(PARAM _LANGUAGE) ;
nCurrent | ndex = 0;

/lget list of files (not subdirectories) in the specified directory
nFiles = new Arraylist();
File[] files = directory.listFiles();
for (int i =0; i <files.length; i++) {

if (!files[i].isDirectory()) {

nFiles.add(files[i]);

}

}

Note: This is the zero-argument version of the initialize method.

There is also a method on the Collection Reader interface called
initialize(ResourceSpecifier, Map) butitisnotrecommended that you
override this method in your code. That method performs internal initialization
steps and then calls the zero-argumenti ni ti al i ze().

hasNext()

The hasNext () method returns whether or not there are any documents remaining to be
read from the collection. The File System Collection Reader's hasNext () method is very
simple. It just checks if there are any more files left to be read:

UIMA Version 2.3.0 CPE Developer's Guide 61

Developing Collection Readers

publ i ¢ bool ean hasNext () {
return nCurrentlndex < nFiles.size();

}

getNext(CAS)

The get Next () method reads the next document from the collection and populates

a CAS. In the simple case, this amounts to reading the file and calling the CAS's

set Docunent Text method. The example File System Collection Reader is slightly more
complex. It first checks for a CAS Initializer. If the CPE includes a CAS Initializer, the CAS
Initializer is used to read the document, and i niti al i ze() the CAS. If the CPE does not
include a CAS Initializer, the File System Collection Reader reads the document and sets
the document text in the CAS.

The File System Collection Reader also stores additional metadata about the document

in the CAS. In particular, it sets the document's language in the special built-in feature
structure ui ma. t cas. Docunment Annot at i on (see Section 4.3, “Built-in CAS Types”

in UIMA References for details about this built-in type) and creates an instance of

or g. apache. ui ma. exanpl es. Sour ceDocunent | nf or mat i on , which stores information
about the document's source location. This information may be useful to downstream
components such as CAS Consumers. Note that the type system descriptor for this type
can be found in or g. apache. ui ma. exanpl es. Sour ceDocunent | nf or mat i on. xm , which
is located in the exanpl es/ sr ¢ directory.

The getNext() method for the File System Collection Reader looks like this:

public void getNext (CAS aCAS) throws | OException, CollectionException {
JCas j cas;
try {
jcas = aCAS. getJCas();
} catch (CASException e) {
t hrow new Col | ecti onException(e);

}

/1 open input streamto file
File file = (File) nFiles.get(nmCurrentl|ndex++);
Buf f eredl nput Stream fis =
new Buf f er edl nput St ream(new Fi | el nput Strean(file));
try {
byte[] contents = new byte[(int) file.length()];
fis.read(contents);
String text;
if (mEncoding !'= null) {
text = new String(contents, nmEncoding);
} else {
text = new String(contents);
}
/1 put docunent in CAS
j cas. set Docunent Text (t ext);

} finally {

62

CPE Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.cas.document_annotation

Developing Collection Readers

if (fis!=null)
fis.close();

}

/1 set language if it was explicitly specified
/las a configuration paraneter
i f (nLanguage !'= null) {
((Docunent Annot ati on) jcas. get Docunent Annot ati onFs()).
set Language(nLanguage) ;

}

/1 Also store |ocation of source docunent in CAS.
/1 This information is critical if CAS Consuners wl|
/1l need to know where the original docunent contents
/'l are | ocated.
/'l For exanple, the Semantic Search CAS | ndexer
/'l wites this information into the search index that
/1 it creates, which allows applications that use the
/'l search index to |locate the docunents that satisfy
//their semantic queries.
Sour ceDocunent | nf ormati on srcDocl nfo =
new Sour ceDocunent | nf ormati on(j cas);
srcDocl nfo. set Uri (
file.getAbsoluteFile().toURL().toString());
srcDocl nfo. set Of f set | nSour ce(0);
srcDocl nf o. set Docunent Si ze((int) file.length());
srcDocl nf 0. set Last Segnent (
mCurrent| ndex == nFiles.size());
srcDocl nf 0. addTol ndexes() ;

The Collection Reader can create additional annotations in the CAS at this point, in the
same way that annotators create annotations.

getProgress|()

The Collection Reader is responsible for returning progress information; that is, how
much of the collection has been read thus far and how much remains to be read. The
framework defines progress very generally; the Collection Reader simply returns an
array of Pr ogr ess objects, where each object contains three fields — the amount already
completed, the total amount (if known), and a unit (e.g. entities (documents), bytes, or
files). The method returns an array so that the Collection Reader can report progress

in multiple different units, if that information is available. The File System Collection
Reader's get Pr ogr ess() method looks like this:

public Progress[] getProgress() {
return new Progress[]{
new Progresslnpl (nmCurrentl ndex, nFil es. si ze(), Progress. ENTI TI ES) };

UIMA Version 2.3.0 CPE Developer's Guide 63

Developing Collection Readers

In this particular example, the total number of files in the collection is known, but
the total size of the collection is not known. As such, a Pr ogr essl npl object for
Progress. ENTI Tl ESis returned, but a Pr ogr ess| npl object for Pr ogr ess. BYTES is not.

close()

The close method is called when the Collection Reader is no longer needed.

The Collection Reader should then release any resources it may be holding. The
FileSystemCollectionReader does not hold resources and so has an empty implementation
of this method:

public void close() throws | OException { }

Optional Methods

The following methods may be implemented:

reconfigure()

This method is called if the Collection Reader's configuration parameters change.

typeSysteminit()

If you are only setting the document text in the CAS, or if you are using the JCas
(recommended, as in the current example, you do not have to implement this method. If
you are directly using the CAS AP], this method is used in the same way as it is used for
an annotator — see Section 1.5.1, “Annotator Methods” [28] for more information.

Threading considerations

Collection readers do not have to be thread safe; they are run with a single thread per
instance, and only one instance per instance of the Collection Processing Manager (CPM)
is made.

XML Descriptor for a Collection Reader

You can use the Component Description Editor to create and / or edit the File System
Collection Reader's descriptor. Here is its descriptor (abbreviated somewhat), which is
very similar to an Analysis Engine descriptor:

<col | ecti onReader Descri pti on
xm ns="http://ui ma. apache. or g/ resour ceSpeci fier">
<f ramewor kl npl ement at i on>or g. apache. ui ma. j ava</f r amewor kI npl enent at i on>
<i npl ement at i onNane>
or g. apache. ui ma. exanpl es. cpe. Fi | eSyst entCol | ect i onReader
</i npl ement at i onNane>
<pr ocessi ngResour ceMet aDat a>
<nane>Fi | e System Col | ecti on Reader </ nane>
<descri ption>Reads files fromthe fil esystem </description>
<versi on>1. 0</ ver si on>
<vendor >The Apache Software Foundati on</vendor>

64 CPE Developer's Guide UIMA Version 2.3.0

Developing Collection Readers

<confi gur ati onPar anet er s>
<configurationParaneter >
<nane>| nput Di r ect or y</ nane>
<description>Directory containing input files</description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>t r ue</ nandat or y>
</ confi gur ati onPar anet er >
<confi gur ati onPar anet er >
<name>Encodi ng</ nane>
<descri pti on>Character encodi ng for the docunents.</description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ mandat or y>
</ confi gurati onPar anet er >
<confi gur ati onPar anet er >
<nanme>Language</ nane>
<descri pti on>l SO | anguage code for the docunents</description>
<type>String</type>
<mul ti Val ued>f al se</ mul ti Val ued>
<nmandat or y>f al se</ nandat or y>
</ confi gurati onPar anet er >
</ confi gurati onPar anet er s>
<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<nane>| nput Di r ect or y</ nane>
<val ue>
<string>C:./Program Fi | es/ apache/ ui ma/ exanpl es/ dat a</ stri ng>
</val ue>
</ naneVal uePai r >
</ confi gurati onParanet er Setti ngs>

<I-- Type System of CASes returned by this Collection Reader -->

<t ypeSyst enDescri pti on>
<i nport s>
<i nport nane="org. apache. ui ma. exanpl es. Sour ceDocurent | nf or nati on"/ >
</i nport s>
</ typeSyst enDescri pti on>

<capabilities>
<capabi lity>
<i nput s/ >
<out put s>
<type al | Annot at or Feat ures="true" >
or g. apache. ui ma. exanpl es. Sour ceDocurnent | nf or mat i on
</type>
</ out put s>
</ capability>
</ capabilities>
<oper ati onal Properti es>
<nodi fi esCas>t rue</ nodi fi esCas>
<mul ti pl eDepl oyrment Al | owed>f al se</ ul ti pl eDepl oynent Al | owed>
<out put sNewCASes>t r ue</ out put sNewCASes>
</ oper ati onal Properti es>
</ processi ngResour ceMet aDat a>

UIMA Version 2.3.0 CPE Developer's Guide

Developing CAS Initializers

‘ </ col | ecti onReader Descri ption>

2.4.2.

Developing CAS Initializers

Note: CAS Initializers are now deprecated (as of version 2.1). For complex

initialization, please use instead the capabilities of creating additional Subjects of
Analysis (see Chapter 6, Multiple CAS Views of an Artifact [127]).

In UIMA 1.x, the CAS Initializer component was intended to be used as a plug-in to
the Collection Reader for when the task of populating the CAS from a raw document is
complex and might be reusable with other data collections.

A CAS Initializer Java class must implement the interface

org. apache. ui ma. col | ection. Caslnitializer,and will also generally extend from
the convenience base class or g. apache. ui ma. col | ection. Caslnitializer_ I npl Base.
A CAS Initializer also must have an XML descriptor, which has the exact same form as a
Collection Reader Descriptor except that the outer tag is <casl ni ti al i zer Descri pti on>.

CAS Initializers have optional i ni ti al i ze(), reconfigure(),and typeSystem nit()
methods, which perform the same functions as they do for Collection Readers. The only
required method for a CAS Initializerisi ni ti al i zeCas(bj ect, CAS). This method
takes the raw document (for example, an | nput St r eamobject from which the document
can be read) and a CAS, and populates the CAS from the document.

2.4.3.

Developing CAS Consumers

Note: In version 2, there is no difference in capability between CAS Consumers
and ordinary Analysis Engines, except for the default setting of the XML
parameters for nul ti pl eDepl oynment Al | owed and nodi f i esCas. We recommend
for future work that users implement and use Analysis Engine components
instead of CAS Consumers.

A CAS Consumer receives each CAS after it has been analyzed by the Analysis Engine.
CAS Consumers typically do not update the CAS; they typically extract data from the
CAS and persist selected information to aggregate data structures such as search engine
indexes or databases.

A CAS Consumer Java class must implement the interface

org. apache. ui ma. col | ecti on. CasConsuner, and will also generally extend from the
convenience base class or g. apache. ui ma. col | ecti on. CasConsuner _I npl Base. A
CAS Consumer also must have an XML descriptor, which has the exact same form as a
Collection Reader Descriptor except that the outer tag is <casConsuner Descri pti on>.

CAS Consumers have optional i ni tial i ze(),reconfigure(),andtypeSystem nit()
methods, which perform the same functions as they do for Collection Readers and CAS
Initializers. The only required method for a CAS Consumer is pr ocessCas(CAS) , which is
where the CAS Consumer does the bulk of its work (i.e., consume the CAS).

66

CPE Developer's Guide UIMA Version 2.3.0

Developing CAS Consumers

The CasConsuner interface (as well as the version 2 Analysis Engine interfac) additionally
defines batch and collection level processing methods. The CAS Consumer or Analysis
Engine can implement the bat chPr ocessConpl et e() method to perform processing that
should occur at the end of each batch of CASes. Similarly, the CAS Consumer or Analysis
Engine can implement the col | ecti onProcessConpl et e() method to perform any
collection level processing at the end of the collection.

A very simple example of a CAS Consumer, which writes an XML representation

of the CAS to a file, is the XMI Writer CAS Consumer. The Java code is in the class

or g. apache. ui ma. exanpl es. cpe. Xni Wit er CasConsuner and the descriptor is in
%J MA_HOVEY4 exanpl es/ descri pt ors/ cas_consumer/ Xm Wit er CasConsuner. xm .

2.4.3.1. Required Methods for a CAS Consumer

When extending the convenience class
org. apache. ui ma. col | ecti on. CasConsuner _| npl Base, the following abstract methods
must be implemented:

initialize()

Theinitialize() method is called by the framework when the CAS Consumer is first
created. CasConsumer _| npl Base actually provides a default implementation of this
method (i.e., it is not abstract), so you are not strictly required to implement this method.
However, a typical CAS Consumer will implement this method to obtain parameter
values and perform various initialization steps.

In this method, the CAS Consumer can access the values of its configuration parameters
and perform other initialization logic. The example XMI Writer CAS Consumer reads its
configuration parameters and sets up the output directory:

public void initialize() throws Resourcelnitializati onException {
nDocNum = 0;
mout putDir = new File((String) getConfigParaneterVal ue(PARAM OUTPUTDI R)) ;
if (!mOutputDir.exists()) {
nmOut put Di r. nkdi rs();
}
}

processCas()

The processCas() method is where the CAS Consumer does most of its work. In our
example, the XMI Writer CAS Consumer obtains an iterator over the document metadata
in the CAS (in the SourceDocumentInformation feature structure, which is created by the
File System Collection Reader) and extracts the URI for the current document. From this
the output filename is constructed in the output directory and a subroutine (wri t eXmi) is
called to generate the output file. The wri t eXmi subroutine uses the Xni CasSeri al i zer
class provided with the UIMA SDK to serialize the CAS to the output file (see the example
source code for details).

UIMA Version 2.3.0 CPE Developer's Guide 67

Developing CAS Consumers

public void processCas(CAS aCAS) throws ResourceProcessException {
String nodel Fil eName = nul | ;

JCas j cas;
try {
jcas = aCAS. getJCas();
} catch (CASException e) {
t hr ow new Resour ceProcessException(e);

}

/1 retreive the filenane of the input file fromthe CAS
FSlterator it = jcas
. get Annot at i onl ndex(Sour ceDocunent | nf or mati on. t ype)
.iterator();
File outFile = null;
if (it.hasNext()) {
Sour ceDocunent | nformation filelLoc =
(Sour ceDocunent | nformation) it.next();
File inFile;
try {
inFile = new File(new URL(fileLoc.getUri()).getPath());
String outFileNanme = inFile.getNanme();
if (fileLoc.getOffsetlnSource() > 0) {
out Fi l eName += ("_" + filelLoc.getOfsetlnSource());
}
out Fi |l eName += ".xm";
outFile = new Fil e(nQut putDir, outFileNane);
nodel Fi | eNanme = nQut put Di r. get Absol utePath() +
"/" + inFile.getName() + ".ecore";
} catch (MalfornedURLException el) {
/1 invalid URL, use default processing bel ow
}
}
if (outFile == null) {
outFile = new Fil e(nQutputDir, "doc" + nmDocNumt+);

}
/] serialize XCAS and wite to output file
try {

writeXm (jcas.getCas(), outFile, nodel FileNane);
} catch (1 CException e) {

t hr ow new Resour ceProcessException(e);
} catch (SAXException e) {

t hr ow new Resour ceProcessException(e);

}

Optional Methods

The following methods are optional in a CAS Consumer, though they are often used.

CPE Developer's Guide UIMA Version 2.3.0

Deploying a CPE

batchProcessComplete()

The framework calls the batchProcessComplete() method at the end of each batch of

CASes. This gives the CAS Consumer or Analysis Engine an opportunity to perform
any batch level processing. Our simple XMI Writer CAS Consumer does not perform
any batch level processing, so this method is empty. Batch size is set in the Collection
Processing Engine descriptor.

collectionProcessComplete()

The framework calls the collectionProcessComplete() method at the end of the collection
(i.e., when all objects in the collection have been processed). At this point in time, no

CAS is passed in as a parameter. This gives the CAS Consumer or Analysis Engine an
opportunity to perform collection processing over the entire set of objects in the collection.
Our simple XMI Writer CAS Consumer does not perform any collection level processing,
so this method is empty.

2.5. Deploying a CPE

The CPM provides a number of service and deployment options that cover instantiation
and execution of CPEs, error recovery, and local and distributed deployment of the CPE
components. The behavior of the CPM (and correspondingly, the CPE) is controlled by
various options and parameters set in the CPE descriptor. The current version of the
CPE Configurator tool, however, supports only default error handling and deployment
options. To change these options, you must manually edit the CPE descriptor.

Eventually the CPE Configurator tool will support configuring these options and a
detailed tutorial for these settings will be provided. In the meantime, we provide only a
high-level, conceptual overview of these advanced features in the rest of this chapter, and
refer the advanced user to Chapter 3, Collection Processing Engine Descriptor Reference in
UIMA References for details on setting these options in the CPE Descriptor.

Figure 2.2, “CPE Instantiation” [70] shows a logical view of how an application uses

the UIMA framework to instantiate a CPE from a CPE descriptor. The CPE descriptor
identifies the CPE components (referencing their corresponding descriptors) and specifies
the various options for configuring the CPM and deploying the CPE components.

UIMA Version 2.3.0 CPE Developer's Guide 69

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Deploying a CPE

A

P Collection Anal_ysis
P Reader Engines
L

|
c — CPE
A Descriptor

T oa

| CPE
o Components

N

Legend
APPLICATION

Figure 2.2. CPE Instantiation

There are three deployment modes for CAS Processors (Analysis Engines and CAS
Consumers) in a CPE:

1. Integrated (runs in the same Java instance as the CPM)
2. Managed (runs in a separate process on the same machine), and
3. Non-managed (runs in a separate process, perhaps on a different machine).

An integrated CAS Processor runs in the same JVM as the CPE. A managed CAS
Processor runs in a separate process from the CPE, but still on the same computer. The
CPE controls startup, shutdown, and recovery of a managed CAS Processor. A non-
managed CAS Processor runs as a service and may be on the same computer as the CPE
or on a remote computer. A non-managed CAS Processor service is started and managed
independently from the CPE.

For both managed and non-managed CAS Processors, the CAS must be transmitted
between separate processes and possibly between separate computers. This is
accomplished using Vinci, a communication protocol used by the CPM and which is
provided as a part of Apache UIMA. Vinci handles service naming and location and

data transport (see Section 3.6.2, “Deploying as a Vinci Service” [96] for more
information). Service naming and location are provided by a Vinci Naming Service, or VNS.
For managed CAS Processors, the CPE uses its own internal VNS. For non-managed CAS
Processors, a separate VNS must be running.

Note: The UIMA SDK also supports using unmanaged remote services via the
web-standard SOAP communications protocol (see Section 3.6.1, “Deploying as

70

CPE Developer's Guide UIMA Version 2.3.0

Deploying Managed CAS Processors

SOAP Service” [94]. This approach is based on a proxy implementation, where
the proxy is essentially running in an integrated mode. To use this approach
with the CPM, use the Integrated mode, with the component being an Aggregate
which, in turn, connects to a remote service.

The CPE Configurator tool currently only supports constructing CPEs that deploy CAS
Processors in integrated mode. To deploy CAS Processors in any other mode, the CPE
descriptor must be edited by hand (better tooling may be provided later). Details on

the CPE descriptor and the required settings for various CAS Processor deployment
modes can be found in Chapter 3, Collection Processing Engine Descriptor Reference in UIMA
References . In the following sections we merely summarize the various CAS Processor
deployment options.

2.5.1. Deploying Managed CAS Processors

Managed CAS Processor deployment is shown in Figure 2.3, “CPE with Managed CAS
Processors” [71]. A managed CAS Processor is deployed by the CPE as a Vinci service.
The CPE manages the lifecycle of the CAS Processor including service launch, restart on
failures, and service shutdown. A managed CAS Processor runs on the same machine as
the CPE, but in a separate process. This provides the necessary fault isolation for the CPE
to protect it from non-robust CAS Processors. A fatal failure of a managed CAS Processor
does not threaten the stability of the CPE.

manage \

Vinci service interface

\ Computer j

Figure 2.3. CPE with Managed CAS Processors

The CPE communicates with managed CAS Processors using the Vinci communication
protocol. A CAS Processor is launched as a Vinci service and its pr ocess() method is
invoked remotely via a Vinci command. The CPE uses its own internal VNS to support
managed CAS processors. The VNS, by default, listens on port 9005. If this port is not
available, the VNS will increment its listen port until it finds one that is available. All

UIMA Version 2.3.0 CPE Developer's Guide 71

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Deploying Non-managed CAS Processors

managed CAS Processors are internally configured to “talk” to the CPE managed VNS.
This internal VNS is transparent to the end user launching the CPE.

To deploy a managed CAS Processor, the CPE deployer must change the CPE descriptor.
The following is a section from the CPE descriptor that shows an example configuration
specifying a managed CAS Processor.

<casProcessor depl oynent="1ocal " nane="Meeting Detector TAE"'>
<descri pt or >
<i ncl ude href="depl oy/ vi nci / Depl oy_Meet i ngDet ect or TAE. xm "/ >
</ descri pt or >
<runl nSepar at ePr ocess>
<exec dir="." executabl e="java">
<env key="CLASSPATH'
val ue="src;
C./ Program Fi | es/ apache/ ui ma/|i b/ ui ma-core.jar;
C./ Program Fi | es/ apache/ ui ma/ |l i b/ ui ma-cpe. jar;
C./ Program Fi | es/ apache/ ui ma/ | i b/ ui ma- exanpl es. j ar;
C./ Program Fi | es/ apache/ ui ma/ | i b/ ui ma- adapter-vinci.jar;
C./Program Fi | es/ apache/uima/lib/jVinci.jar"/>
<ar g>- DLOG=C: / Tenp/ servi ce. | og</ ar g>
<ar g>or g. apache. ui ma. ref erence_i npl . col | ecti on.
servi ce. vi nci . Vi nci Anal ysi sengi ner Servi ce_i npl </ ar g>
<ar g>${descri ptor} </ arg>
</ exec>
</ runl nSepar at ePr ocess>
<depl oyment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRateThreshol d acti on="term nate" val ue="1/100"/>
<maxConsecuti veRestarts action="term nate" val ue="3"/>
<ti meout nax="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="10000"/>
</ casProcessor>

See Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for
details and required settings.

2.5.2. Deploying Non-managed CAS Processors

Non-managed CAS Processor deployment is shown in Figure 2.4, “CPE with non-
managed CAS Processors” [73]. In non-managed mode, the CPE supports

connectivity to CAS Processors running on local or remote computers using Vinci. Non-
managed processors are different from managed processors in two aspects:

1. Non-managed processors are neither started nor stopped by the CPE.

2. Non-managed processors use an independent VNS, also neither started nor
stopped by the CPE.

72 CPE Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Deploying Non-managed CAS Processors

Computer i}

]
—3
regjister
. i
PO

Computer

I cAS
Processor

CAS I T
Processor

Computer

cAS
Processor

Vinci service Computer
interface

Figure 2.4. CPE with non-managed CAS Processors

While non-managed CAS Processors provide the same level of fault isolation and
robustness as managed CAS Processors, error recovery support for non-managed CAS
Processors is much more limited. In particular, the CPE cannot restart a non-managed
CAS Processor after an error.

Non-managed CAS Processors also require a separate Vinci Naming Service running
on the network. This VNS must be manually started and monitored by the end user or
application. Instructions for running a VNS can be found in Section 3.6.5.1, “Starting
VNS” [100].

To deploy a non-managed CAS Processor, the CPE deployer must change the CPE
descriptor. The following is a section from the CPE descriptor that shows an example
configuration for the non-managed CAS Processor.

<casProcessor depl oynent ="renote" name="Meeti ng Detector TAE'>
<descri pt or >
<i ncl ude href=
"descri ptors/vinci Servi ce/ Meeti ngDet ect or Vi nci Servi ce. xm "/ >
</ descri pt or >
<depl oyment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRateThreshol d acti on="term nate" val ue="1/100"/>
<maxConsecuti veRestarts action="termn nate" val ue="3"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="10000"/ >
</ casProcessor >

UIMA Version 2.3.0 CPE Developer's Guide

Deploying Integrated CAS Processors

See Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for
details and required settings.

2.5.3. Deploying Integrated CAS Processors

Integrated CAS Processors are shown in Figure 2.5, “CPE with integrated CAS
Processor” [74]. Here the CAS Processors run in the same JVM as the CPE, just like

the Collection Reader and CAS Initializer. This deployment method results in minimal
CAS communication and transport overhead as the CAS is shared in the same process
space of the JVM. However, a CPE running with all integrated CAS Processors is limited
in scalability by the capability of the single computer on which the CPE is running. There
is also a stability risk associated with integrated processors because a poorly written CAS
Processor can cause the JVM, and hence the entire CPE, to abort.

“.. 2

CAS
Processor

\ W
Computer /

Figure 2.5. CPE with integrated CAS Processor

The following is a section from a CPE descriptor that shows an example configuration for
the integrated CAS Processor.

<casProcessor depl oynent="i ntegrated” nanme="“Meeting Detector TAE">
<descri pt or >
<i ncl ude href="descriptors/tutorial/ex4/ MeetingDetectorTAE. xm "/>
</ descri pt or>
<depl oyment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRat eThreshol d acti on="term nate" val ue="100/1000"/>
<maxConsecuti veRestarts action="term nate" val ue="30"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="10000"/>
</ casProcessor >

74 CPE Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Collection Processing Examples

See Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for
details and required settings.

2.6. Collection Processing Examples

The UIMA SDK includes a set of examples illustrating the three modes of deployment,
integrated, managed, and non-managed. These are in the / exanpl es/ descri pt or s/

col I ecti on_processi ng_engi ne directory. There are three CPE descriptors that run an
example annotator (the Meeting Finder) in these modes.

To run either the integrated or managed examples, use the r unCPE script in the /bin
directory of the UIMA installation, passing the appropriate CPE descriptor as an
argument, or if you're using Eclipse and have the ui ngj - exanpl es project in your

workspace, you can use the Eclipse Menu — Run — Run... - and then pick the launch
configuration “UIMA Run CPE”.

Note: The r unCPE script must be run from the %Jl MA_HOVE% exanpl es
directory, because the example CPE descriptors use relative path names that are
resolved relative to this working directory. For instance,

runCPE
descriptors)\ collection_processing_engine \ MeetingFinderCPE_Integrated.xml

To run the non-managed example, there are some additional steps.

1. Start a VNS service by running the st ar t VNS script in the / bi n directory, or using
the Eclipse launcher “UIMA Start VNS”.

2. Deploy the Meeting Detector Analysis Engine as a Vinci service, by running the
start Vi nci Servi ce script in the / bi n directory or using the Eclipse launcher for
this, and passing it the location of the descriptor to deploy, in this case %J MA_HOVE
% exanpl es/ depl oy/ vi nci / Depl oy_Meet i ngDet ect or TAE. xn , or if you're using
Eclipse and have the ui maj - exanpl es project in your workspace, you can use the

Eclipse Menu — Run — Run... — and then pick the launch configuration “UIMA
Start Vinci Service”.

3. Now, run the runCPE script (or if in Eclipse, run the launch configuration
“UIMA Run CPE”), passing it the CPE for the non-managed version
(%J MA_HOVEYS exanpl es/ descri ptors/col | ecti on_processi ng_engi ne/
Meet i ngFi nder CPE_NonManaged. xn).

This assumes that the Vinci Naming Service, the runCPE application, and the

Meet i ngDet ect or TAE service are all running on the same machine. Most of the scripts
that need information about VNS will look for values to use in environment variables
VNS_HOST and VNS_PORT; these default to “localhost” and “9000”. You may set these
to appropriate values before running the scripts, as needed; you can also pass the name of
the VNS host as the second argument to the startVinciService script.

UIMA Version 2.3.0 CPE Developer's Guide 75

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Collection Processing Examples

Alternatively, you can edit the scripts and/or the XML files to specify alternatives

for the VNS_HOST and VNS_PORT. For instance, if the r unCPE application is

running on a different machine from the Vinci Naming Service, you can edit the

Meet i ngFi nder CPE_NonManaged. xm and change the vnsHost parameter: <par anet er

name="vnsHost" val ue="1ocal host" type="string"/> to specify the VNS host
instead of “localhost”.

76

CPE Developer's Guide UIMA Version 2.3.0

Chapter 3. Application Developer's Guide

This chapter describes how to develop an application using the Unstructured Information
Management Architecture (UIMA). The term application describes a program that provides
end-user functionality. A UIMA application incorporates one or more UIMA components
such as Analysis Engines, Collection Processing Engines, a Search Engine, and/or a
Document Store and adds application-specific logic and user interfaces.

3.1. The UIMAFramework Class

An application developer's starting point for accessing UIMA framework functionality

is the or g. apache. ui ma. Ul MAFr amewor k class. The following is a short introduction to
some important methods on this class. Several of these methods are used in examples in
the rest of this chapter. For more details, see the Javadocs (in the docs/api directory of the
UIMA SDK).

¢ UIMAFramework.getXMLParser(): Returns an instance of the UIMA XML Parser
class, which then can be used to parse the various types of UIMA component
descriptors. Examples of this can be found in the remainder of this chapter.

¢ UIMAFramework.produceXXX(ResourceSpecifier): There are various produce
methods that are used to create different types of UIMA components from
their descriptors. The argument type, ResourceSpecifier, is the base interface
that subsumes all types of component descriptors in UIMA. You can get a
ResourceSpecifier from the XMLParser. Examples of produce methods are:

¢ produceAnalysisEngine

¢ produceCasConsumer

¢ produceCaslnitializer

¢ produceCollectionProcessingEngine

¢ produceCollectionReader
There are other variations of each of these methods that take additional, optional
arguments. See the Javadocs for details.

* UIMAFramework.getLogger(<optional-logger-name>): Gets a reference to the
UIMA Logger, to which you can write log messages. If no logger name is passed,
the name of the returned logger instance is “org.apache.uima”.

¢ UIMAFramework.getVersionString(): Gets the number of the UIMA version you are
using.

¢ UIMAFramework.newDefaultResourceManager(): Gets an instance of the UIMA
ResourceManager. The key method on ResourceManager is setDataPath, which

Application Developer's Guide 77

Using Analysis Engines

allows you to specify the location where UIMA components will go to look for their
external resource files. Once you've obtained and initialized a ResourceManager,
you can pass it to any of the produceXXX methods.

3.2. Using Analysis Engines

This section describes how to add analysis capability to your application by using
Analysis Engines developed using the UIMA SDK. An Analysis Engine (AE) is a
component that analyzes artifacts (e.g. documents) and infers information about them.

An Analysis Engine consists of two parts - Java classes (typically packaged as one or
more JAR files) and AE descriptors (one or more XML files). You must put the Java classes
in your application's class path, but thereafter you will not need to directly interact

with them. The UIMA framework insulates you from this by providing a standard
AnalysisEngine interfaces.

The term Text Analysis Engine (TAE) is sometimes used to describe an Analysis Engine
that analyzes a text document. In the UIMA SDK v1.x, there was a TextAnalysisEngine
interface that was commonly used. However, as of the UIMA SDK v2.0, this interface has
been deprecated and all applications should switch to using the standard AnalysisEngine
interface.

The AE descriptor XML files contain the configuration settings for the Analysis Engine
as well as a description of the AE's input and output requirements. You may need to edit
these files in order to configure the AE appropriately for your application - the supplier
of the AE may have provided documentation (or comments in the XML descriptor itself)
about how to do this.

3.2.1.

Instantiating an Analysis Engine

The following code shows how to instantiate an AE from its XML descriptor:

/1 get Resource Specifier fromXM file
XMLI nput Source in = new XM.I nput Sour ce("MyDescriptor.xm");
Resour ceSpeci fier specifier =
U MAFr anewor k. get XM_Par ser () . par seResour ceSpeci fier (in);

/lcreate AE here
Anal ysi sEngi ne ae =
Ul MAFr amewor k. pr oduceAnal ysi sengi ne(specifier);

The first two lines parse the XML descriptor (for AEs with multiple descriptor files, one
of them is the “main” descriptor - the AE documentation should indicate which it is). The
result of the parse is a Resour ceSpeci fi er object. The third line of code invokes a static
factory method Ul MAFr anewor k. pr oduceAnal ysi sengi ne, which takes the specifier and
instantiates an Anal ysi sEngi ne object.

78

Application Developer's Guide UIMA Version 2.3.0

Analyzing Text Documents

There is one caveat to using this approach - the Analysis Engine instance that you create
will not support multiple threads running through it concurrently. If you need to support
this, see Section 3.2.5, “Multi-threaded Applications” [81].

3.2.2. Analyzing Text Documents

There are two ways to use the AE interface to analyze documents. You can either use the
JCas interface, which is described in detail by Chapter 5, JCas Reference in UIMA References
or you can directly use the CAS interface, which is described in detail in Chapter 4, CAS
Reference in UIMA References. Besides text documents, other kinds of artifacts can also be
analyzed; see Chapter 5, Annotations, Artifacts, and Sofas [121] for more information.

The basic structure of your application will look similar in both cases:

Using the JCas

/lcreate a JCas, given an Anal ysis Engi ne (ae)
JCas jcas = ae.newlCas();

/lanal yze a documnent
j cas. set Docunent Text (doclt ext);
ae. process(j cas);
doSonet hi ngW t hResul t s(j cas);
jcas.reset();

/ l anal yze anot her docunent
j cas. set Docunent Text (doc2t ext);
ae. process(j cas);
doSonet hi ngW t hResul t s(j cas) ;
jcas.reset();

/[done
ae. destroy();

Using the CAS

/lcreate a CAS
CAS aCasVi ew = ae. newCAS() ;

/lanal yze a document

aCasVi ew. set Docunent Text (doc1t ext) ;
ae. process(aCasVi ew) ;

doSonet hi ngW t hResul t s(aCasVi ew) ;
aCasVi ew. reset () ;

/ anal yze anot her docunent

aCasVi ew. set Docunent Text (doc2t ext) ;
ae. process(aCasVi ew) ;

doSonet hi ngW t hResul t s(aCasVi ew) ;
aCasVi ew. reset () ;

UIMA Version 2.3.0 Application Developer's Guide 79

../references/references.pdf#ugr.ref.jcas
../references/references.pdf#ugr.ref.cas
../references/references.pdf#ugr.ref.cas

Analyzing Non-Text Artifacts

/[done
ae. destroy();

First, you create the CAS or JCas that you will use. Then, you repeat the following four
steps for each document:

1. Put the document text into the CAS or JCas.

2. Call the AE's process method, passing the CAS or JCas as an argument

3. Do something with the results that the AE has added to the CAS or JCas

4. Call the CAS's or JCas's reset() method to prepare for another analysis

3.2.3. Analyzing Non-Text Artifacts

Analyzing non-text artifacts is similar to analyzing text documents. The main difference is
that instead of using the set Document Text method, you need to use the Sofa APIs to set
the artifact into the CAS. See Chapter 5, Annotations, Artifacts, and Sofas [121] for details.

3.2.4. Accessing Analysis Results

Annotators (and applications) access the results of analysis via the CAS, using the CAS
or JCas interfaces. These results are accessed using the CAS Indexes. There is one built-
in index for instances of the built-in type ui ma. t cas. Annot at i on that can be used to
retrieve instances of Annot at i on or any subtype of Annotation. You can also define
additional indexes over other types.

Indexes provide a method to obtain an iterators over their contents; the iterator returns the
matching elements one at time from the CAS.

3.2.4.1. Accessing Analysis Results using the JCas
See:
® Section 1.3.3, “Reading the Results of Previous Annotators” [26]
® Chapter 5, [Cas Reference in UIMA References

e The Javadocs for or g. apache. ui ma. j cas. JCas.

3.2.4.2. Accessing Analysis Results using the CAS
See:
® Chapter 4, CAS Reference in UIMA References

e The source code for or g. apache. ui ma. exanpl es. Pri nt Annot at i ons, which is in
exanpl es\ src.

¢ The Javadocs for the or g. apache. ui ma. cas and or g. apache. ui na. cas. t ext
packages.

80 Application Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.jcas
../references/references.pdf#ugr.ref.cas

Multi-threaded Applications

3.2.5. Multi-threaded Applications

The simplest way to use an AE in a multi-threaded environment is to use the Java
synchronized keyword to ensure that only one thread is using an AE at any given time.
For example:

public class My/Application {
private Anal ysi sengi ne mAnal ysi SEngi ne;
private CAS nCAS;

public MyApplication() {
/1 get Resource Specifier fromXM file
XMLI nput Source in = new XM.I nput Sour ce(" MyDescri ptor.xm");
Resour ceSpeci fier specifier =
Ul MAFr amewor k. get XM_Par ser () . par seResour ceSpeci fier(in);

//create Anal ysis Engi ne here
mAnal ysi sEngi ne = Ul MAFr amewor k. pr oduceAnal ysi sengi ne(specifier);
MCAS = mAnal ysi sEngi ne. newCAS() ;

}

/'l Assune some other part of your rnulti-threaded application could
/1 call “analyzeDocunent” on different threads, asynchronusly

publ i c synchroni zed voi d anal yzeDocunent (Stri ng aDoc) {
/lanal yze a document
nCAS. set Docunent Text (abDoc) ;
mAnal ysi sEngi ne. process();
doSonet hi ngW t hResul t s(nTCAS) ;
NCAS. reset () ;

Without the synchronized keyword, this application would not be thread-safe. If multiple
threads called the analyzeDocument method simultaneously, they would both use the
same CAS and clobber each others' results. The synchronized keyword ensures that no
more than one thread is executing this method at any given time. For more information
on thread synchronization in Java, see http://java.sun.com/docs/books/tutorial/essential/
threads/multithreaded.html .

The synchronized keyword ensures thread-safety, but does not allow you to process more
than one document at a time. If you need to process multiple documents simultaneously
(for example, to make use of a multiprocessor machine), you'll need to use more than one
CAS instance.

Because CAS instances use memory and can take some time to construct, you don't want
to create a new CAS instance for each request. Instead, you should use a feature of the
UIMA SDK called the CAS Pool, implemented by the type CasPool .

UIMA Version 2.3.0 Application Developer's Guide 81

http://java.sun.com/docs/books/tutorial/essential/threads/multithreaded.html
http://java.sun.com/docs/books/tutorial/essential/threads/multithreaded.html

Multi-threaded Applications

A CAS Pool contains some number of CAS instances (you specify how many when you
create the pool). When a thread wants to use a CAS, it checks out an instance from the
pool. When the thread is done using the CAS, it must release the CAS instance back into
the pool. If all instances are checked out, additional threads will block and wait for an
instance to become available. Here is some example code:

public class MyApplication {
private CasPool ntCasPool ;

private Anal ysi SEngi ne mAnal ysi sEngi ne;

public MyApplication()

{
/1 get Resource Specifier fromXM file

XMLI nput Source in = new XM.I nput Sour ce(" MyDescriptor.xm");
Resour ceSpeci fier specifier =
U MAFr amewor k. get XM_Par ser () . par seResour ceSpeci fier(in);

//Create multithreadable AE that will

/1 Accept 3 sinultaneous requests

/1 The 3rd paraneter specifies a tinmeout.

/I When the nunber of simultaneous requests exceeds 3,

/1 additional requests will wait for other requests to finish.

/1 This parameter determ nes the maxi mum nunber of nilliseconds

/1 that a new request should wait before throw ng an

/1 - a value of O will cause themto wait forever.

mAnal ysi séngi ne = U MAFr amewor k. pr oduceAnal ysi seEngi ne(specifier, 3, 0);

/lcreate CAS pool with 3 CAS instances
mCasPool = new CasPool (3, mAnal ysi sEngi ne);

}

public void anal yzeDocunent (String aDoc) {
// check out a CAS instance (argunent 0 neans no tineout)
CAS cas = ntasPool . get Cas(0);
try {
/lanal yze a documnent
cas. set Docunment Text (aDoc) ;
mAnal ysi sEngi ne. process(cas);
doSonet hi ngW t hResul t s(cas) ;
} finally {
/I MAKE SURE we rel ease the CAS instance
nmCasPool . rel easeCas(cas) ;

There is not much more code required here than in the previous example. First, there
is one additional parameter to the AnalysisEngine producer, specifying the number of

82

Application Developer's Guide UIMA Version 2.3.0

Multiple AEs & Creating Shared CASes

annotator instances to create'. Then, instead of creating a single CAS in the constructor,
we now create a CasPool containing 3 instances. In the analyze method, we check out a
CAS, use it, and then release it.

Note: Frequently, the two numbers (number of CASes, and the number of AEs)
will be the same. It would not make sense to have the number of CASes less than
the number of AEs — the extra AE instances would always block waiting for a CAS
from the pool. It could make sense to have additional CASes, though — if you had
other multi-threaded processes that were using the CASes, other than the AEs.

The getCAS() method returns a CAS which is not specialized to any particular subject of
analysis. To process things other than this, please refer to Chapter 5, Annotations, Artifacts,
and Sofas [121] .

Note the use of the try...finally block. This is very important, as it ensures that the CAS we
have checked out will be released back into the pool, even if the analysis code throws an
exception. You should always use try...finally when using the CAS pool; if you do not, you
risk exhausting the pool and causing deadlock.

The parameter 0 passed to the CasPool.getCas() method is a timeout value. If this is set to
a positive integer, it is the maximum number of milliseconds that the thread will wait for
an instance to become available in the pool. If this time elapses, the getCas method will
return null, and the application can do something intelligent, like ask the user to try again
later. A value of 0 will cause the thread to wait for an available CAS, potentially forever.

3.2.6. Using Multiple Analysis Engines and Creating
Shared CASes

In most cases, the easiest way to use multiple Analysis Engines from within an application
is to combine them into an aggregate AE. For instructions, see Section 1.3, “Building
Aggregate Analysis Engines” [21]. Be sure that you understand this method before
deciding to use the more advanced feature described in this section.

If you decide that your application does need to instantiate multiple AEs and have those
AEs share a single CAS, then you will no longer be able to use the various methods on the
Anal ysi sengi ne class that create CASes (or JCases) to create your CAS. This is because
these methods create a CAS with a data model specific to a single AE and which therefore
cannot be shared by other AEs. Instead, you create a CAS as follows:

Suppose you have two analysis engines, and one CAS Consumer, and you want to create
one type system from the merge of all of their type specifications. Then you can do the
following;:

! Both the UIMA Collection Processing Manager framework and the remote deployment services framework have
implementations which use CAS pools in this manner, and thereby relieve the annotator developer of the necessity to make
their annotators thread-safe.

UIMA Version 2.3.0 Application Developer's Guide 83

Saving CASes to file systems

Anal ysi sengi neDescri ption aeDescl =
U MAFr anewor k. get XMLPar ser () . par seAnal ysi sengi neDescri ption(...);

Anal ysi sengi neDescri ption aeDesc2 =
U MAFr anewor k. get XMLPar ser () . par seAnal ysi sengi neDescri ption(...);

CasConsuner Descri ption ccDesc =
U MAFr amewor k. get XM_Par ser () . par seCasConsuner Descri ption(...);

List list = new ArrayList();
|ist.add(aeDescl);
list.add(aeDesc?2);
list.add(ccDesc);

CAS cas = CasCreationUils.createCas(list);

/1 (optional, if using the JCas interface)
JCas jcas = cas.getJCas();

The CasCreationUltils class takes care of the work of merging the AEs' type systems and
producing a CAS for the combined type system. If the type systems are not compatible, an
exception will be thrown.

3.2.7. Saving CASes to file systems

The UIMA framework provides APIs to save and restore the contents of a CAS to streams.
The CASes are stored in an XML format. There are two forms of this format. The preferred
form is the XMI form (see Section 8.3, “Using XMI CAS Serialization” [156]). An older
format is also available, called XCAS.

To save an XMI representation of a CAS, use the seri al i ze method of the class

org. apache. ui ma. util.Xn CasSeri al i zer. To save an XCAS representation of a CAS,
use the class or g. apache. ui ma. cas. i npl . XCASSeri al i zer instead; see the Javadocs for
details.

Both of these external forms can be read back in, using the deseri al i ze method of the
class or g. apache. ui ma. util. Xm CasDeseri al i zer. This method deserializes into a
pre-existing CAS, which you must create ahead of time, pre-set-up with the proper type
system. See the Javadocs for details.

3.3. Using Collection Processing Engines

A Collection Processing Engine (CPE) processes collections of artifacts (documents) through
the combination of the following components: a Collection Reader, an optional CAS
Initializer, Analysis Engines, and CAS Consumers. Collection Processing Engines and
their components are described in Chapter 2, Collection Processing Engine Developer's
Guide [51] .

84

Application Developer's Guide UIMA Version 2.3.0

Running a CPE from a Descriptor

Like Analysis Engines, CPEs consist of a set of Java classes and a set of descriptors. You
need to make sure the Java classes are in your classpath, but otherwise you only deal with
descriptors.

3.3.1. Running a Collection Processing Engine from a
Descriptor

Section 2.3, “Running a CPE from Your Own Java Application” [58] describes how to use
the APIs to read a CPE descriptor and run it from an application.

3.3.2. Configuring a Collection Processing Engine
Descriptor Programmatically

For the finest level of control over the CPE descriptor settings, the CPE offers
programmatic access to the descriptor via an API. With this API, a developer can create
a complete descriptor and then save the result to a file. This also can be used to read in
a descriptor (using XMLParser.parseCpeDescription as shown in the previous section),
modify it, and write it back out again. The CPE Descriptor API allows a developer to
redefine default behavior related to error handling for each component, turn-on check-
pointing, change performance characteristics of the CPE, and plug-in a custom timer.

Below is some example code that illustrates how this works. See the Javadocs for package
org.apache.uima.collection.metadata for more details.

/] Creates descriptor with default settings
CpeDescription cpe = CpeDescri ptorFactory. produceDescri ptor();

/1 Add Col | ecti onReader
cpe. addCol | ecti onReader ([descriptor]);

/1 Add Caslnitializer (deprecated)
cpe. addCaslnitializer(<cas initializer descriptor>);

/! Provide the nunber of CASes the CPE will use
cpe. set CasPool Si ze(2);

/1 Define and add Anal ysis Engi ne
Cpel nt egr at edCasProcessor personTitl eProcessor =
CpeDescri pt or Fact ory. produceCasProcessor (“Person”);

/'l Provide descriptor for the Analysis Engine
personTi tl eProcessor. set Descri ptor([descriptor]);

/1 Continue, despite errors and skip bad Cas
personTi t| eProcessor. set Acti onOnMaxError (“term nate”);

/'l ncrease amount of time in ns the CPE waits for response
//fromthis Analysis Engine
personTi tl eProcessor. set Ti meout (100000) ;

UIMA Version 2.3.0 Application Developer's Guide 85

Configuring a CPE Descriptor Programmatically

/1 Add Anal ysis Engine to the descriptor
cpe. addCasProcessor (personTi t| eProcessor);

/1 Define and add CAS Consuner

Cpel nt egr at edCasPr ocessor consuner Processor =
CpeDescri pt or Fact ory. produceCasProcessor (“Printer”);
consuner Processor. set Descri ptor ([descriptor]);

/| Def i ne batch size
consuner Processor. set Bat chSi ze(100) ;

// Term nate CPE on nax errors
personTi tl eProcessor. set Acti onOnMaxError (“term nate”);

/1 Add CAS Consuner to the descriptor
cpe. addCasProcessor (consuner Processor) ;

/1 Add Checkpoint file and define checkpoint frequency (ns)
cpe. set Checkpoi nt (“[pat h] / checkpoi nt.dat”, 3000);

/1l Plug in customtinmer class used for timng events
cpe. set Ti mer (“org. apache. uima.internal .util.JavaTi mer”);

/1 Define nunber of docunents to process
cpe. set NunifoPr ocess(1000) ;

/1 Dunp the descriptor to the System out
((CpeDescri ptionl npl)cpe).toXM(System out);

The CPE descriptor for the above configuration looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cpeDescription xm ns="http://ui ma. apache. org/resourceSpeci fier">
<col | ecti onReader >
<col | ecti onl terator>
<descri pt or >
<i nclude href="[descriptor]"/>
</ descri pt or>
<confi gurati onParanet er Settings>. ..
</ confi gurationPar anet er Setti ngs>
</col | ectionlterator>

<caslnitializer>
<descri pt or >
<i nclude href="[descriptor]"/>
</ descri pt or >
<confi gurati onPar anet er Settings>. ..
</ confi gurationPar anet er Setti ngs>
</caslnitializer>
</ col | ecti onReader >

<casProcessors casPool Si ze="2" processi ngUni t Thr eadCount =" 1" >

86

Application Developer's Guide UIMA Version 2.3.0

Setting Configuration Parameters

<casProcessor depl oynent="integrated" nanme="Person">
<descri pt or >
<include href="[descriptor]"/>
</ descri pt or >
<depl oyment Par anet er s/ >
<error Handl i ng>
<errorRat eThreshol d acti on="term nate" val ue="100/1000"/>
<maxConsecuti veRestarts action="term nate" val ue="30"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="100" ti ne="1000ns"/>
</ casProcessor >

<casProcessor depl oynent="integrated" nanme="Printer">
<descri pt or >
<i ncl ude href="[descriptor]"/>
</ descri pt or >
<depl oyment Par anet er s/ >
<error Handl i ng>
<error Rat eThreshol d acti on="t ermn nat e"
val ue="100/1000"/ >
<maxConsecuti veRestarts action="termn nate"
val ue="30"/>
<ti meout max="100000" default="-1"/>
</ error Handl i ng>
<checkpoi nt bat ch="100" ti me="1000ns"/>
</ casProcessor >
</ casProcessor s>

<cpeConfi g>
<numToPr ocess>1000</ nuniToPr ocess>
<depl oyAs>i mmedi at e</ depl oyAs>
<checkpoi nt file="[path]/checkpoint.dat" tinme="3000ns"/>
<timerlnpl >

org. apache. ui ma. reference_i npl . util.JavaTi ner

</tinmerlnpl>

</ cpeConfi g>

</ cpeDescri pti on>

3.4. Setting Configuration Parameters

Configuration parameters can be set using APIs as well as configured using the XML
descriptor metadata specification (see Section 1.2.1, “Configuration Parameters” [14].

There are two different places you can set the parameters via the APISs.
* After reading the XML descriptor for a component, but before you produce the
component itself, and
o After the component has been produced.

Setting the parameters before you produce the component is done using the
ConfigurationParameterSettings object. You get an instance of this for a particular

UIMA Version 2.3.0 Application Developer's Guide

87

Integrating Text Analysis and Search

component by accessing that component description's metadata. For instance, if you
produced a component description by using Ul MAFr amewor k. get XM_Par ser () . par se. . .
method, you can use that component description's getMetaData() method to get the
metadata, and then the metadata's getConfigurationParameterSettings method to get

the ConfigurationParameterSettings object. Using that object, you can set individual
parameters using the setParameterValue method. Here's an example, for a CAS Consumer
component:

/Il Create a description object by reading the XM. for the descriptor

CasConsuner Descri pti on casConsuner Desc =
Ul MAFr amewor k. get XM_Par ser () . par seCasConsuner Descri pti on(new
XMLI nput Sour ce("descri ptors/cas_consuner/ I nlineXm CasConsuner.xm ")) ;

/1 get the settings fromthe netadata
Confi gurati onParanet er Setti ngs consumer Par anSettings =
casConsuner Desc. get Met aDat a() . get Conf i gur ati onPar anet er Setti ngs();

/1 Set a paraneter val ue

consuner Par anfSet t i ngs. set Par anet er Val ue(
I nli neXm CasConsuner. PARAM OUTPUTDI R,
out put Di r. get Absol ut ePat h());

Then you might produce this component using:

CasConsuner conponent =
Ul MAFr anewor k. pr oduceCasConsuner (casConsuner Desc) ;

A side effect of producing a component is calling the component's “initialize” method,
allowing it to read its configuration parameters. If you want to change parameters after
this, use

conponent . set Conf i gPar anet er Val ue(
“<par amet er - nane>",
“<par anet er - val ue>") ;

and then signal the component to re-read its configuration by calling the component's
reconfigure method:

conponent . reconfigure();

Although these examples are for a CAS Consumer component, the parameter APIs also
work for other kinds of components.

3.5. Integrating Text Analysis and Search

The UIMA SDK on IBM's alphaWorks http://www.alphaworks.ibm.com/tech/uima
includes a semantic search engine that you can use to build a search index that includes
the results of the analysis done by your AE. This combination of AEs with a search engine

88 Application Developer's Guide UIMA Version 2.3.0

http://www.alphaworks.ibm.com/tech/uima

Building an Index

capable of indexing both words and annotations over spans of text enables what UIMA
refers to as semantic search. Over time we expect to provide additional information on
integrating other open source search engines.

Semantic search is a search where the semantic intent of the query is specified using one

or more entity or relation specifiers. For example, one could specify that they are looking
for a person (named) “Bush.” Such a query would then not return results about the kind

of bushes that grow in your garden.

3.5.1. Building an Index

To build a semantic search index using the UIMA SDK, you run a Collection Processing
Engine that includes your AE along with a CAS Consumer which takes the tokens and
annotatitions, together with sentence boundaries, and feeds them to a semantic searcher's
index term input. The alphaWorks semantic search component includes a CAS Consumer
called the Semantic Search CAS Indexer that does this; this component is available from the
alphaWorks site. Your AE must include an annotator that produces Tokens and Sentence
annotations, along with any “semantic” annotations, because the Indexer requires this.
The Semantic Search CAS Indexer's descriptor is located here: exanpl es/ descri pt or s/
cas_consuner/ Semant i cSear chCasl ndexer . xnml .

3.5.1.1. Configuring the Semantic Search CAS Indexer

Since there are several ways you might want to build a search index from the information
in the CAS produced by your AE, you need to supply the Semantic Search CAS Consumer
— Indexer with configuration information in the form of an Index Build Specification file.
Apache UIMA includes code for parsing Index Build Specification files (see the Javadocs
for details). An example of an Indexing specification tailored to the AE from the tutorial in
the Chapter 1, Annotator and Analysis Engine Developer’s Guide [1] is located in exanpl es/
descriptors/tutorial/search/ Meetingl ndexBui | dSpec. xmi . It looks like this:

<i ndexBui | dSpeci fi cati on>
<i ndexBui | dl t en>
<nane>or g. apache. ui ma. exanpl es. t okeni zer. Token</ name>
<i ndexRul e>
<styl e name="Tern'/>
</ i ndexRul e>
</i ndexBui | dl t en>
<i ndexBui | dl t en>
<nanme>or ¢g. apache. ui ma. exanpl es. t okeni zer . Sent ence</ nane>
<i ndexRul e>
<styl e nane="Breaki ng"/>
</ i ndexRul e>
</indexBui |l dl t em>
<i ndexBui | dl t erm>
<name>or g. apache. ui na. tut ori al . Meet i ng</ nane>
<i ndexRul e>
<styl e nane="Annot ati on"/>
</ i ndexRul e>

UIMA Version 2.3.0 Application Developer's Guide 89

Building an Index

</indexBuil dltenm>
<i ndexBui | dl t en>
<name>or g. apache. ui na. t ut ori al . RoomNunber </ nane>
<i ndexRul e>
<styl e nane="Annot ati on">
<attri but eMappi ngs>
<mappi ng>
<f eat ur e>bui | di ng</ f eat ur e>
<i ndexNane>bui | di ng</i ndexName>
</ mappi ng>
</ attri but eMappi ngs>
</styl e>
</ i ndexRul e>
</indexBuil dl tenm>
<i ndexBui | dI t en>
<nanme>or g. apache. ui ma. t ut ori al . Dat eAnnot </ nanme>
<i ndexRul e>
<styl e nane="Annot ati on"/>
</'i ndexRul e>
</indexBuil dlten>
<i ndexBui | dl t enm>
<nanme>or g. apache. ui ma. tut ori al . Ti reAnnot </ nane>
<i ndexRul e>
<styl e nane="Annot ati on"/>
</ i ndexRul e>
</indexBui |l dl t em>
</ i ndexBui | dSpeci fi cati on>

The index build specification is a series of index build items, each of which identifies a
CAS annotation type (a subtype of ui ma. t cas. Annot at i on — see Chapter 4, CAS Reference
in UIMA References) and a style.

The first item in this example specifies that the annotation type

or g. apache. ui ma. exanpl es. t okeni zer . Token should be indexed with the “Term”
style. This means that each span of text annotated by a Token will be considered a single
token for standard text search purposes.

The second item in this example specifies that the annotation type

or g. apache. ui ma. exanpl es. t okeni zer . Sent ence should be indexed with the
“Breaking” style. This means that each span of text annotated by a Sentence will be
considered a single sentence, which can affect that search engine's algorithm for matching
queries. The semantic search engine available from alphaWorks always requires tokens
and sentences in order to index a document.

Note: Requirements for Term and Breaking rules: The Semantic Search indexer
from alphaWorks requires that the items to be indexed as words be designated
using the Term rule.

The remaining items all use the “Annotation” style. This indicates that each annotation of
the specified types will be stored in the index as a searchable span, with a name equal to
the annotation name (without the namespace).

90

Application Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.cas

Building an Index

Also, features of annotations can be indexed using the <at t ri but eMappi ngs>
subelement. In the example index build specification, we declare that the bui | di ng
feature of the type or g. apache. ui ma. tut ori al . Room\Nunber should be indexed. The
<i ndexName> element can be used to map the feature name to a different name in the
index, but in this example we have opted to use the same name, bui | di ng.

At the end of the batch or collection, the Semantic Search CAS Indexer builds the index.
This index can be queried with simple tokens or with XML tags.

Examples:

* A query on the word “UIMA” will retrieve all documents that have the occurrence
of the word. But a query of the type <Meet i ng>Ul MA</ Meet i ng> will retrieve
only those documents that contain a Meeting annotation (produced by our
MeetingDetector TAE, for example), where that Meeting annotation contains the
word “UIMA”.

* A query for <RoomNunber bui | di ng=""Yor kt own"/ > will return documents that
have a RoomNumber annotation whose bui | di ng feature contains the term
“Yorktown”.

More information on the syntax of these kinds of queries, called XML Fragments,
can be found in documentation for the semantic search engine component

on http://www.alphaworks.ibm.com/tech/uima. For more information

on the Index Build Specification format, see the UIMA Javadocs for class

or g. apache. ui ma. sear ch. | ndexBui | dSpeci fi cati on. Accessing the Javadocs is
described Chapter 1, Javadocs in UIMA References.

3.5.1.2. Building and Running a CPE including the Semantic
Search CAS Indexer

The following steps illustrate how to build and run a CPE that uses the UIMA Meeting
Detector TAE and the Simple Token and Sentence Annotator, discussed in the Chapter 1,
Annotator and Analysis Engine Developer’s Guide [1] along with a CAS Consumer called the
Semantic Search CAS Indexer, to build an index that allows you to query for documents
based not only on textual content but also on whether they contain mentions of Meetings
detected by the TAE.

Run the CPE Configurator tool by executing the cpeGui shell script in the bi n directory of
the UIMA SDK. (For instructions on using this tool, see the Chapter 2, Collection Processing
Engine Configurator User’s Guide in UIMA Tools Guide and Reference.)

In the CPE Configurator tool, select the following components by browsing to their
descriptors:
e Collection Reader: %J MA_HOMVEY exanpl es/ descri pt ors/ col | ecti onReader/
Fi | eSyst enCol | ect i onReader . xm
* Analysis Engine: include both of these; one produces tokens/sentences, required by
the indexer in all cases and the other produces the meeting annotations of interest.

UIMA Version 2.3.0 Application Developer's Guide 91

http://www.alphaworks.ibm.com/tech/uima
../references/references.pdf#ugr.ref.javadocs
../tools/tools.pdf#ugr.tools.cpe
../tools/tools.pdf#ugr.tools.cpe

Semantic Search Query Tool

® o) MA_HOVEY exanpl es/ descri pt ors/ anal ysi s_engi ne/
Si npl eTokenAndSent enceAnnot at or . xni

® o) MA_HOVEY exanpl es/ descri ptors/tutorial/ex6/U MAMeeti ngDet ect or TAE. xnl
e Two CAS Consumers:
® 04J MA_ HOVEY exanpl es/ descri pt ors/ cas_consuner/ Semant i cSear chCasl ndexer . xn

® 04J MA_HOVEY exanpl es/ descri ptors/cas_consuner/ Xm Wit er CasConsurer . xm

Set up parameters:

* Set the File System Collection Reader's “Input Directory” parameter to point to the
%JI MA_HOVEY exanpl es/ dat a directory.

¢ Set the Semantic Search CAS Indexer's “Indexing Specification Descriptor”
parameter to point to %I MA_HOMVEY exanpl es/ descri ptors/tutorial / search/
Meet i ngl ndexBui | dSpec. xml

¢ Set the Semantic Search CAS Indexer's “Index Dir” parameter to whatever directory
into which you want the indexer to write its index files.

Warning: The Indexer erases old versions of the files it creates in this
directory.
¢ Set the XMI Writer CAS Consumer's “Output Directory” parameter to whatever
directory into which you want to store the XMI files containing the results of your
analysis for each document.

Click on the Run Button. Once the run completes, a statistics dialog should appear, in
which you can see how much time was spent in each of the components involved in the
run.

3.5.2. Semantic Search Query Tool

The Semantic Search component from UIMA on alphaWorks contains a simple tool for
running queries against a semantic search index. After building an index as described in
the previous section, you can launch this tool by running the shell script: semanticSearch,
found in the / bi n subdirectory of the Semantic Search UIMA install, at the command
prompt. If you are using Eclipse, and have installed the UIMA examples, there will be

a Run configuration you can use to conveniently launch this, called U MA Senmanti ¢

Sear ch. This will display the following screen:

92 Application Developer's Guide UIMA Version 2.3.0

Semantic Search Query Tool

o semantic Search BER
File

Unstructured Information Management Architecture

EDNEEE 300 e 67 | .2
Indes Directony e mpimalsearchindey | i Erowse.. J
HCASHEMI Directory Cerngtulmatarni_output | | Browse.. |
Original Documetts Directony |: Hruwse..._i
Type System Descriptor Clapache-uimatexamplesidesconptorstuton alledTuton al Typ eSystem xml | I Browse... |
XML Fragments Query] v | Sean:h :

| Wiew Anahysis . View Original Document

Configure the fields on this screen as follows:

* Set the “Index Directory” to the directory where you built your index. This is the
same value that you supplied for the “Index Dir” parameter of the Semantic Search
CAS Indexer in the CPE Configurator.

¢ Set the “XMI/XCAS Directory” to the directory where you stored the results of
your analysis. This is the same value that you supplied for the “Output Directory”
parameter of XMI Writer CAS Consumer in the CPE Configurator.

¢ Optionally, set the “Original Documents Directory” to the directory containing the
original plain text documents that were analyzed and indexed. This is only needed
for the "View Original Document" button.

¢ Set the “Type System Descriptor” to the location of the descriptor that describes
your type system. For this example, this will be %J MA_HOVEY% exanpl es/
descriptors/tutorial/ex4/ Tutorial TypeSystem xmi

Now, in the “XML Fragments” field, you can type in single words or XML queries

where the XML tags correspond to the labels in the index build specification file (e.g.
<Meet i ng>Ul MA</ Meet i ng>). XML Fragments are described in the documentation for the
semantic search engine component on http://www.alphaworks.ibm.com/tech/uima.

After you enter a query and click the “Search” button, a list of hits will appear. Select
one of the documents and click “View Analysis” to view the document in the UIMA
Annotation Viewer.

The source code for the Semantic Search query program is in exanpl es/ src/ con i bnt
apache- ui ma/ sear ch/ exanpl es/ Senant i cSear chGU! . j ava . A simple command-line

UIMA Version 2.3.0 Application Developer's Guide 93

http://www.alphaworks.ibm.com/tech/uima

Working with Remote Services

query program is also provided in exanpl es/ src/ conl i bni apache- ui ma/ sear ch/
exanpl es/ Semant i cSear ch. j ava . Using these as a model, you can build a query
interface from your own application. For details on the Semantic Search Engine query
language and interface, see the documentation for the semantic search engine component
on http://www.alphaworks.ibm.com/tech/uima.

3.6. Working with Remote Services

The UIMA SDK allows you to easily take any Analysis Engine or CAS Consumer and
deploy it as a service. That Analysis Engine or CAS Consumer can then be called from a
remote machine using various network protocols.

The UIMA SDK provides support for two communications protocols:
* SOAP, the standard Web Services protocol
* Vindi, a lightweight version of SOAP, included as a part of Apache UIMA.

The UIMA framework can make use of these services in two different ways:

1. An Analysis Engine can create a proxy to a remote service; this proxy acts like a
local component, but connects to the remote. The proxy has limited error handling
and retry capabilities. Both Vinci and SOAP are supported.

2. A Collection Processing Engine can specify non-Integrated mode (see Section 2.5,
“Deploying a CPE” [69]. The CPE provides more extensive error recovery
capabilities. This mode only supports the Vinci communications protocol.

3.6.1.

Deploying a UIMA Component as a SOAP Service

To deploy a UIMA component as a SOAP Web Service, you need to first install the
following software components:

* Apache Tomcat 5.0 or 5.5 (http://jakarta.apache.org/tomcat/)

* Apache Axis 1.3 or 1.4 (http://ws.apache.org/axis/)

Later versions of these components will likely also work, but have not been tested.
Next, you need to do the following setup steps:

e Set the CATALINA_HOME environment variable to the location where Tomcat is
installed.

¢ Copy all of the JAR files from %J MA_HOVE% | i b to the UCATALI NA_HOVEY4
webapps/ axi s/ EB- | NF/ | i b in your installation.

* Copy your JAR files for the UIMA components that you wish to %CATALI NA_HOVE%
webapps/ axi s/ WEB- | NF/ | i b in your installation.

* IMPORTANT: any time you add JAR files to Tomcat (for instance, in the above
2 steps), you must shutdown and restart Tomcat before it “notices” this. So now,
please shutdown and restart Tomcat.

94

Application Developer's Guide UIMA Version 2.3.0

http://www.alphaworks.ibm.com/tech/uima
http://jakarta.apache.org/tomcat/
http://ws.apache.org/axis/

Deploying as SOAP Service

¢ All the Java classes for the UIMA Examples are packaged in the ui ma-
exanpl es. j ar file which is included in the %JI VA HOVE% | i b folder.

¢ In addition, if an annotator needs to locate resource files in the classpath,
those resources must be available in the Axis classpath, so copy these also to
YUCATALI NA_HOVEY webapps/ axi s/ VEEB- | NF/ cl asses .

As an example, if you are deploying the GovernmentTitleRecognizer

(found in exanpl es/ descri pt or s/ anal ysi s_engi ne/

Gover nment O f i ci al Recogni zer _RegEx_TAE) as a SOAP service, you need to copy
the file exanpl es/ r esour ces/ Gover nment Ti t | ePat t erns. dat into .../ WEB- | NF/
cl asses.

Test your installation of Tomcat and Axis by starting Tomcat and going to ht t p: //

| ocal host : 8080/ axi s/ happyaxi s. j sp in your browser. Check to be sure that this
reports that all of the required Axis libraries are present. One common missing file may be
activation.jar, which you can get from java.sun.com.

After completing these setup instructions, you can deploy Analysis Engines or CAS
Consumers as SOAP web services by using the depl oyt ool utility, with is located in the /
bi n directory of the UIMA SDK. depl oyt ool is a command line program utility that takes
as an argument a web services deployment descriptors (WSDD file); example WSDD files
are provided in the exanpl es/ depl oy/ soap directory of the UIMA SDK. Deployment
Descriptors have been provided for deploying and undeploying some of the example
Analysis Engines that come with the SDK.

As an example, the WSDD file for deploying the example Person Title annotator looks like
this (important parts are in bold italics):

<depl oynment name="PersonTit| eAnnot at or "
xm ns="http://xnm . apache. org/ axi s/ wsdd/ "
xm ns:java="http://xm . apache. or g/ axi s/ wsdd/ provi ders/j ava">

<servi ce nanme="urn: PersonTitl eAnnotator" provider="java: RPC'>
<par anet er nane="scope" val ue="Request"/>
<par anet er nane="cl assNane"
val ue="or g. apache. ui na. r ef erence_i npl . anal ysi s_engi ne
.servi ce. soap. Axi sAnal ysi sengi neServi ce_i npl "/ >
<par anet er nane="al | onedMet hods" val ue="get Met aDat a process"/>
<par anet er nane="al | onedRol es" val ue="*"/>
<par anet er nane="resour ceSpeci fi er Pat h"
val ue="C: / Program Fi | es/ apache/ ui ma/ exanpl es/
descri pt ors/ anal ysi s_engi ne/ Per sonTi t| eAnnot at or . xm "/ >

<par anet er nane="num nstances" val ue="3"/>

<I-- Type Mappings omtted fromthis docunent;

UIMA Version 2.3.0 Application Developer's Guide 95

Deploying as a Vinci Service

you will not need to edit them -->
<typeMapping .../>
<typeMapping .../>
<typeMapping .../>

</ service>

</ depl oynent >

To modify this WSDD file to deploy your own Analysis Engine or CAS Consumer, just
replace the areas indicated in bold italics (deployment name, service name, and resource
specifier path) with values appropriate for your component.

The num nst ances parameter specifies how many instances of your Analysis Engine
or CAS Consumer will be created. This allows your service to support multiple clients
concurrently. When a new request comes in, if all of the instances are busy, the new
request will wait until an instance becomes available.

To deploy the Person Title annotator service, issue the following command:

C./ Program Fi | es/ apache/ ui ma/ bi n>depl oyt ool
..l exanpl es/ depl oy/ soap/ Depl oy_Per sonTi t | eAnnot at or . wsdd

Test if the deployment was successful by starting up a browser, pointing it to your Tomcat
axis” webpage (e.g., htt p: / /| ocal host : 8080/ axi s) and clicking on the
List link. This should bring up a page which shows the deployed services, where you

(7

installation's

should see the service you just deployed.

The other components can be deployed by replacing

Depl oy_Per sonTi t| eAnnot at or . wsdd with one of the other Deploy descriptors in the
deploy directory. The deploytool utility can also undeploy services when passed one of
the Undeploy descriptors.

Note: The depl oyt ool shell script assumes that the web services are to be
installed at ht t p: // | ocal host : 8080/ axi s. If this is not the case, you will need to
update the shell script appropriately.

Once you have deployed your component as a web service, you may call it from a remote
machine. See Section 3.6.3, “Calling a UIMA Service” [98] for instructions.

3.6.2. Deploying a UIMA Component as a Vinci Service

There are no software prerequisites for deploying a Vinci service. The necessary libraries
are part of the UIMA SDK. However, before you can use Vinci services you need to deploy
the Vinci Naming Service (VNS), as described in section Section 3.6.5, “The Vinci Naming
Services (VNS)” [100].

96

Application Developer's Guide UIMA Version 2.3.0

Deploying as a Vinci Service

To deploy a service, you have to insure any components you want to include

can be found on the class path. One way to do this is to set the environment

variable UIMA_CLASSPATH to the set of class paths you need for any included
components. Then run the st art Vi nci Ser vi ce shell script, which is located

in the bi n directory, and pass it the path to a Vinci deployment descriptor, for
example: C: Ul MA>bi n/ st art Vi nci Servi ce ../ exanpl es/ depl oy/ vi nci /

Depl oy_Per sonTi t| eAnnot at or . xn . If you are running Eclipse, and have the ui maj -

exanpl es project in your workspace, you can use the Eclipse Menu — Run - Run... and
then pick “UIMA Start Vinci Service”.

This example deployment descriptor looks like:

<depl oyment name="Vinci Person Title Annotator Service">
<servi ce nanme="ui ma. annot at or. PersonTi t| eAnnot ator" provi der="vinci">

<par anet er nane="r esour ceSpeci fi er Pat h"
val ue="C:. / Program Fi | es/ apache/ ui ma/ exanpl es/ descri pt ors/
anal ysi s_engi ne/ Per sonTi t| eAnnot at or. xm "/ >

<par anet er nane="num nstances" val ue="1"/>
<par anet er nane="server Socket Ti neout" val ue="120000"/>
</ service>

</ depl oyment >

To modify this deployment descriptor to deploy your own Analysis Engine or CAS
Consumer, just replace the areas indicated in bold italics (deployment name, service name,
and resource specifier path) with values appropriate for your component.

The num nst ances parameter specifies how many instances of your Analysis Engine
or CAS Consumer will be created. This allows your service to support multiple clients
concurrently. When a new request comes in, if all of the instances are busy, the new
request will wait until an instance becomes available.

The ser ver Socket Ti neout parameter specifies the number of milliseconds (default =

5 minutes) that the service will wait between requests to process something. After this
amount of time, the server will presume the client may have gone away - and it “cleans
up”, releasing any resources it is holding. The next call to process on the service will result
in a cycle which will cause the client to re-establish its connection with the service (some
additional overhead).

There are two additional parameters that you can add to your deployment descriptor:

* <paraneter nane="threadPool M nSi ze" val ue="[I nteger]"/>: Specifies the
number of threads that the Vinci service creates on startup in order to serve clients'
requests.

UIMA Version 2.3.0 Application Developer's Guide 97

Calling a UIMA Service

* <paraneter nane="threadPool MaxSi ze" val ue="[| nteger]"/>: Specifies the
maximum number of threads that the Vinci service will create. When the number
of concurrent requests exceeds the t hr eadPool M nSi ze, additional threads will be
created to serve requests, until the t hr eadPool MaxSi ze is reached.

The st art Vi nci Ser vi ce script takes two additional optional parameters. The first one
overrides the value of the VNS_HOST environment variable, allowing you to specify the
name server to use. The second parameter if specified needs to be a unique (on this server)
non-negative number, specifying the instance of this service. When used, this number
allows multiple instances of the same named service to be started on one server; they will
all register with the Vinci name service and be made available to client requests.

Once you have deployed your component as a web service, you may call it from a remote
machine. See Section 3.6.3, “Calling a UIMA Service” [98] for instructions.

3.6.3.

How to Call a UIMA Service

Once an Analysis Engine or CAS Consumer has been deployed as a service, it can be
used from any UIMA application, in the exact same way that a local Analysis Engine or
CAS Consumer is used. For example, you can call an Analysis Engine service from the
Document Analyzer or use the CPE Configurator to build a CPE that includes Analysis
Engine and CAS Consumer services.

To do this, you use a service client descriptor in place of the usual Analysis Engine or CAS
Consumer Descriptor. A service client descriptor is a simple XML file that indicates the
location of the remote service and a few parameters. Example service client descriptors are
provided in the UIMA SDK under the directories exanpl es/ descri pt or s/ soapSer vi ce
and exanpl es/ descri pt ors/ vi nci Servi ce. The contents of these descriptors are
explained below.

Also, before you can call a SOAP service, you need to have the necessary Axis JAR files in
your classpath. If you use any of the scripts in the bi n directory of the UIMA installation
to launch your application, such as documentAnalyzer, these JARs are added to the
classpath, automatically, using the CATALI NA_HOME environment variable. The required
files are the following (all part of the Apache Axis download)

* activation.jar

® axis.jar

* commons-discovery.jar

* commons-logging.jar

® jaxrpc.jar

® saaj.jar

3.6.3.1. SOAP Service Client Descriptor

The descriptor used to call the PersonTitleAnnotator SOAP service from the example
above is:

98

Application Developer's Guide UIMA Version 2.3.0

Restrictions on remotely deployed services

<uri Specifier xm ns="http://uim. apache. org/resourceSpecifier">
<resour ceType>Anal ysi sEngi ne</resour ceType>
<uri>http://| ocal host: 8080/ axi s/ servi ces/urn: PersonTitl eAnnot at or </ uri >
<pr ot ocol >SOAP</ pr ot ocol >
<t i meout >60000</t i meout >
</ uri Specifier>

The <resourceType> element must contain either AnalysisEngine or CasConsumer. This
specifies what type of component you expect to be at the specified service address.

The <uri> element describes which service to call. It specifies the host (localhost, in this
example) and the service name (urn:PersonTitleAnnotator), which must match the name
specified in the deployment descriptor used to deploy the service.

3.6.3.2. Vinci Service Client Descriptor

To call a Vinci service, a similar descriptor is used:

<uri Specifier xm ns="http://ui ma. apache. org/ resourceSpecifier">
<r esour ceType>Anal ysi sEngi ne</ r esour ceType>
<uri >ui ma. annot . Per sonTi t | eAnnot at or </ uri >
<pr ot ocol >Vi nci </ pr ot ocol >
<t i meout >60000</ti meout >
<par anet er s>
<par anet er nanme="VNS_HOST" val ue="sone.internet.ip. name-or-address"/>
<par anet er nane="VNS_PORT" val ue="9000"/>
</ par anet er s>
</ uri Specifier>

Note that Vinci uses a centralized naming server, so the host where the service is deployed
does not need to be specified. Only a name (ui ma. annot . Per sonTi t | eAnnot at or) is
given, which must match the name specified in the deployment descriptor used to deploy
the service.

The host and/or port where your Vinci Naming Service (VNS) server is running can be
specified by the optional <parameter> elements. If not specified, the value is taken from
the specification given your Java command line (if present) using - DVNS_HOST=<host >
and - DVNS_PORT=<por t > system arguments. If not specified on the Java command line,
defaults are used: localhost for the VNS_HOST, and 9000 for the VNS_PORT. See the next
section for details on setting up a VNS server.

3.6.4. Restrictions on remotely deployed services

Remotely deployed services are started on remote machines, using UIMA component
descriptors on those remote machines. These descriptors supply any configuration and
resource parameters for the service (configuration parameters are not transmitted from
the calling instance to the remote one). Likewise, the remote descriptors supply the type
system specification for the remote annotators that will be run (the type system of the
calling instance is not transmitted to the remote one).

UIMA Version 2.3.0 Application Developer's Guide 99

The Vinci Naming Services (VNS)

The remote service wrapper, when it receives a CAS from the caller, instantiates it for

the remote service, making instances of all types which the remote service specifies.
Other instances in the incoming CAS for types which the remote service has no type
specification for are kept aside, and when the remote service returns the CAS back to the
caller, these type instances are re-merged back into the CAS being transmitted back to the
caller. Because of this design, a remote service which doesn't declare a type system won't
receive any type instances.

Note: This behavior may change in future releases, to one where configuration
Y & &
parameters and / or type systems are transmitted to remote services.

3.6.5. The Vinci Naming Services (VNS)

Vinci consists of components for building network-accessible services, clients for accessing
those services, and an infrastructure for locating and managing services. The primary
infrastructure component is the Vinci directory, known as VNS (for Vinci Naming
Service).

On startup, Vinci services locate the VNS and provide it with information that is used by
VNS during service discovery. Vinci service provides the name of the host machine on
which it runs, and the name of the service. The VNS internally creates a binding for the
service name and returns the port number on which the Vinci service will wait for client
requests. This VNS stores its bindings in a filesystem in a file called vns.services.

In Vinci, services are identified by their service name. If there is more than one physical
service with the same service name, then Vinci assumes they are equivalent and will
route queries to them randomly, provided that they are all running on different hosts.
You should therefore use a unique service name if you don't want to conflict with other
services listed in whatever VNS you have configured jVinci to use.

3.6.5.1. Starting VNS

To run the VNS use the st ar t VNS script found in the bi n directory of the UIMA
installation, or launch it from Eclipse. If you've installed the ui naj - exanpl es project, it

will supply a pre-configured launch script you can access in Eclipse by selecting Menu —
Run - Run... and picking “UIMA Start VNS”.

Note: VNS runs on port 9000 by default so please make sure this port is
available. If you see the following exception:

j ava. net. Bi ndExcepti on: Address already in use:
JVM Bi nd

it indicates that another process is running on port 9000. In this case, add the
parameter - p <port > to the st ar t VNS command, using <por t > to specify an
alternative port to use.

100 Application Developer's Guide UIMA Version 2.3.0

The Vinci Naming Services (VNS)

When started, the VNS produces output similar to the following:

[10/6/04 3: 44

[10/6/04 3: 44
[10/ 6/ 04 3: 44
[10/6/04 3: 44

[10/ 6/ 04 3: 44
[10/6/04 3: 44
[10/ 6/ 04 3: 44
[10/ 6/ 04 3: 44
[10/ 6/ 04 3: 44

[10/6/04 3: 44
[10/ 6/ 04 3: 44
[10/6/04 3: 44
SSS>5>5>5>5>55>55>>
SSS>555>5>5>5>5>5>5>
[10/ 6/ 04 3: 44
[10/6/04 3: 44
[10/6/04 3: 44
[10/ 6/ 04 3: 44

using files
and .vns. services

PM | nain]

PM | nmi n]
PM | nmi n]
PM | nain]

PM | nmi n]
PM | nain]
PM | nain]
PM | nmi n]
PM | nmi n]

PM | nmi n]

WARNI NG Config file doesn't exist,

creating a new enpty config file!

Loadi ng config file : .vns.services
Loadi ng wor kspaces file : .vns.workspaces

(WARNI NG) Unexpect ed exception:
java.io. Fi | eNot FoundException: .vns.workspaces (The system cannot find
the file specified)
at java.io.FilelnputStream open(Native Mt hod)
at java.io.FilelnputStream <init>(Unknown Source)
at java.io.FilelnputStream <init>(Unknown Source)
at java.io.FileReader. <init>(Unknown Source)
at org.apache. vinci.transport.vns. service. VNS. | oadWr kspaces(VNS. j ava: 339
at org.apache. vinci.transport.vns. service. VNS. start Servi ng(VNS. java: 237)
at org.apache. vinci.transport.vns. service. VNS. mai n(VNS. j ava: 179)

WARNI NG failed to | oad workspace

VNS Wor kspace : null

Loadi ng counter file : .vns.counter

Coul d not load the counter file : .vns.counter
Starting backup thread

.vns. servi ces. bak

Serving on port : 9000

PM | Thread-0] Backup thread started
PM | Thread-0] Saving to config file : .vns.services. bak
VNS is up and running! <<<<<<<<<<<<<<<<<

Type 'quit

and hit ENTER to term nate VNS <<<<<<<<<<<<<

PM | Thread-0] Config save required 10 mllis

PM | Thread-0] Saving to config file : .vns.services
PM | Thread-0] Config save required 10 millis

PM | Thread-0] Saving counter file : .vns.counter

Note: Disregard the java.io.FileNotFoundException: . \vns.workspaces (The system

cannot find the file specified). It is just a complaint. not a serious problem. VNS

Workspace is a feature of the VNS that is not critical. The important information to
noteis[10/ 6/ 04 3:44 PM| main] Serving on port : 9000 which states the
actual port where VNS will listen for incoming requests. All Vinci services and all
clients connecting to services must provide the VNS port on the command line IF
the port is not a default. Again the default port is 9000. Please see Section 3.6.5.3,
“Launching Vinci Services” [102] below for details about the command line and
parameters.

3.6.5.2. VNS Files

The VNS maintains two external files:

® vns. services
e vns. counter

These files are generated by the VNS in the same directory where the VNS is launched
from. Since these files may contain old information it is best to remove them before

UIMA Version 2.3.0 Application Developer's Guide 101

The Vinci Naming Services (VNS)

starting the VNS. This step ensures that the VNS has always the newest information and
will not attempt to connect to a service that has been shutdown.

3.6.5.3. Launching Vinci Services

When launching Vinci service, you must indicate which VNS the service will connect to.
A Vinci service is typically started using the script st art Vi nci Ser vi ce, found in the bi n
directory of the UIMA installation. (If you're using Eclipse and have the ui maj - exanpl es
project in the workspace, you will also find an Eclipse launcher named “UIMA Start Vinci
Service” you can use.) For the script, the environmental variable VNS_HOST should be set
to the name or IP address of the machine hosting the Vinci Naming Service. The default

is localhost, the machine the service is deployed on. This name can also be passed as the
second argument to the startVinciService script. The default port for VNS is 9000 but can
be overriden with the VNS_PORT environmental variable.

If you write your own startup script, to define Vinci's default VNS you must provide the
following JVM parameters:

java - DVNS_HOST=I ocal host - DVNS_PORT=9000 . ..

The above setting is for the VNS running on the same machine as the service. Of course
one can deploy the VNS on a different machine and the JVM parameter will need to be
changed to this:

j ava - DVNS_HOST=<host > - DVNS_PORT=9000 . ..

where “<host>" is a machine name or its IP where the VNS is running.

Note: VNS runs on port 9000 by default. If you see the following exception:

(WARNI NG Unexpect ed excepti on:

org. apache. vinci . transport. Servi ceDownExcepti on:
VNS i naccessi bl e: java. net. Connect

Exception: Connection refused: connect

then, perhaps the VNS is not running OR the VNS is running but it is using a
different port. To correct the latter, set the environmental variable VNS_PORT to
the correct port before starting the service.

To get the right port check the VNS output for something similar to the following;:

[10/6/04 3:44 PM| main] Serving on port : 9000

It is printed by the VNS on startup.

102 Application Developer's Guide UIMA Version 2.3.0

Configuring Timeout Settings

3.6.6. Configuring Timeout Settings

UIMA has several timeout specifications, summarized here. The timeouts associated with
remote services are discussed below. In addition there are timeouts that can be specified
for:

* Acquiring an empty CAS from a CAS Pool: See Section 3.2.5, “Multi-threaded
Applications” [81].

* Reassembling chunks of a large document See Section 3.7, “CPE Operational
Parameters” in UIMA References

If your application uses remote UIMA services it is important to consider how to set the
timeout values appropriately. This is particularly important if your service can take a long
time to process each request.

There are two types of timeout settings in UIMA, the client timeout and the server socket
timeout. The client timeout is usually the most important, it specifies how long that client
is willing to wait for the service to process each CAS. The client timeout can be specified
for both Vinci and SOAP. The server socket timeout (Vinci only) specifies how long the
service holds the connection open between calls from the client. After this amount of time,
the server will presume the client may have gone away - and it “cleans up”, releasing any
resources it is holding. The next call to process on the service will cause the client to re-
establish its connection with the service (some additional overhead).

3.6.6.1. Setting the Client Timeout

The way to set the client timeout is different depending on what deployment mode you
use in your CPE (if any).

If you are using the default “integrated” deployment mode in your CPE, or if you are not
using a CPE at all, then the client timeout is specified in your Service Client Descriptor
(see Section 3.6.3, “Calling a UIMA Service” [98]). For example:

<uri Specifier xm ns="http://ui ma. apache. org/resourceSpecifier">
<resour ceType>Anal ysi sengi ne</resour ceType>
<uri >ui ma. annot . Per sonTi t | eAnnot at or </ uri >
<pr ot ocol >Vi nci </ pr ot ocol >
<t i meout >60000</ti meout >
<par anet er s>
<par anet er nane="VNS_HOST" val ue="sone. i nternet.ip. nane-or-address"/>
<par aneter nane="VNS_PORT" val ue="9000"/>
</ par anet er s>
</ uri Specifier>

The client timeout in this example is 60000. This value specifies the number of
milliseconds that the client will wait for the service to respond to each request. In this
example, the client will wait for one minute.

UIMA Version 2.3.0 Application Developer's Guide 103

../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.operational_parameters
../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.operational_parameters

Configuring Timeout Settings

If the service does not respond within this amount of time, processing of the current
CAS will abort. If you called the Anal ysi sEngi ne. pr ocess method directly from your
application, an Exception will be thrown. If you are running a CPE, what happens next
is dependent on the error handling settings in your CPE descriptor (see Section 3.6.1.7,
“<errorHandling> Element” in UIMA References). The default action is for the CPE to
terminate, but you can override this.

If you are using the “managed” or “non-managed” deployment mode in your CPE,
then the client timeout is specified in your CPE desciptor's er r or Handl i ng element. For
example:

<error Handl i ng>
<maxConsecuti veRestarts .../>
<errorRateThreshold .../>
<ti meout nax="60000"/>

</ error Handl i ng>

As in the previous example, the client timeout is set to 60000, and this specifies the
number of milliseconds that the client will wait for the service to respond to each request.

If the service does not respond within the specified amount of time, the action is
determined by the settings for maxConsecuti veRest arts and er r or Rat eThr eshol d.
These settings support such things as restarting the process (for “managed” deployment
mode), dropping and reestablishing the connection (for “non-managed” deployment
mode), and removing the offending service from the pipeline. See Section 3.6.1.7,
“<errorHandling> Element” in UIMA References) for details.

Note that the client timeout does not apply to the Get Met aDat a request that is made when
the client first connects to the service. This call is typically very fast and does not need

a large timeout (the default is 60 seconds). However, if many clients are competing for

a small number of services, it may be necessary to increase this value. See Section 2.7,
“Service Client Descriptors” in UIMA References

3.6.6.2. Setting the Server Socket Timeout

The Server Socket Timeout applies only to Vinci services, and is specified in the Vinci
deployment descriptor as discussed in section Section 3.6.2, “Deploying as a Vinci
Service” [96]. For example:

<depl oyment name="Vinci Person Title Annotator Service">
<servi ce name="ui ma. annot at or. PersonTi t| eAnnot at or" provi der="vi nci ">
<par anet er nane="resour ceSpeci fi erPath"
val ue="C: / Program Fi | es/ apache/ ui ma/ exanpl es/ descri pt or s/

anal ysi s_engi ne/ PersonTi t | eAnnot at or. xm "/ >

<par anet er nane="num nst ances" val ue="1"/>

104

Application Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.cas_processors.individual.error_handling
../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.cas_processors.individual.error_handling
../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.cas_processors.individual.error_handling
../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.cas_processors.individual.error_handling
../references/references.pdf#ugr.ref.xml.component_descriptor.service_client
../references/references.pdf#ugr.ref.xml.component_descriptor.service_client

Increasing performance using parallelism

<par anet er nane="server Socket Ti mreout" val ue="120000"/>
</ servi ce>

</ depl oyment >

The server socket timeout here is set to 120000 milliseconds, or two minutes. This
parameter specifies how long the service will wait between requests to process something.
After this amount of time, the server will presume the client may have gone away -

and it “cleans up”, releasing any resources it is holding. The next call to process on the
service will cause the client to re-establish its connection with the service (some additional
overhead). The service may print a “Read Timed Out” message to the console when the
server socket timeout elapses.

In most cases, it is not a problem if the server socket timeout elapses. The client will
simply reconnect. However, if you notice “Read Timed Out” messages on your server
console, followed by other connection problems, it is possible that the client is having
trouble reconnecting for some reason. In this situation it may help increase the stability of
your application if you increase the server socket timeout so that it does not elapse during
actual processing.

3.7. Increasing performance using parallelism

There are several ways to exploit parallelism to increase performance in the UIMA
Framework. These range from running with additional threads within one Java virtual
machine on one host (which might be a multi-processor or hyper-threaded host) to
deploying analysis engines on a set of remote machines.

The Collection Processing facility in UIMA provides the ability to scale the pipe-

line of analysis engines. This scale-out runs multiple threads within the Java virtual
machine running the CPM, one for each pipe in the pipe-line. To activate it, in the
<casProcessor s> descriptor element, set the attribute pr ocessi nguni t Thr eadCount,
which specifies the number of replicated processing pipelines, to a value greater than

1, and insure that the size of the CAS pool is equal to or greater than this number (the
attribute of <casPr ocessor s> to set is casPool Si ze). For more details on these settings,
see Section 3.6, “CAS Processors” in UIMA References .

For deployments that incorporate remote analysis engines in the Collection Manager
pipe-line, running on multiple remote hosts, scale-out is supported which uses the Vinci
naming service. If multiple instances of a service with the same name, but running on
different hosts, are registered with the Vinci Name Server, it will assign these instances to
incoming requests.

There are two modes supported: a “random” assignment, and a “exclusive” one. The
“random” mode distributes load using an algorithm that selects a service instance at
random. The UIMA framework supports this only for the case where all of the instances
are running on unique hosts; the framework does not support starting 2 or more instances
on the same host.

UIMA Version 2.3.0 Application Developer's Guide 105

../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.cas_processors

Monitoring AE Performance using JMX

The exclusive mode dedicates a particular remote instance to each Collection Manager
pip-line instance. This mode is enabled by adding a configuration parameter in the
<casProcessor> section of the CPE descriptor:

<deploymentParameters>
<parameter name="service-access" value="exclusive" />
</deploymentParameters>

If this is not specified, the “random” mode is used.

In addition, remote UIMA engine services can be started with a parameter that
specifies the number of instances the service should support (see the <par anet er
name="num nst ances" > XML element in remote deployment descriptor Section 3.6,
“Working with Remote Services” [94] Specifying more than one causes the

service wrapper for the analysis engine to use multi-threading (within the single Java
Virtual Machine — which can take advantage of multi-processor and hyper-threaded
architectures).

Note: When using Vinci in “exclusive” mode (see service access under

Section 3.6.1.5, “<deploymentParameters> Element” in UIMA References), only one
thread is used. To achieve multi-processing on a server in this case, use multiple
instances of the service, instead of multiple threads (see Section 3.6.2, “Deploying
as a Vinci Service” [96].

3.8. Monitoring AE Performance using JMX

As of version 2, UIMA supports remote monitoring of Analysis Engine performance via
the Java Management Extensions (JMX) API JMX is a standard part of the Java Runtime
Environment v5.0; there is also a reference implementation available from Sun for Java
1.4. An introduction to JMX is available from Sun here: http://java.sun.com/developer/
technical Articles/J2SE/jmx.html. When you run a UIMA with a JVM that supports JMX,
the UIMA framework will automatically detect the presence of J]MX and will register
MBeans that provide access to the performance statistics.

Note: The Sun JVM supports local monitoring; for others you can configure your
+ application for remote monitoring (even when on the same host) by specifying
a unique port number, e.g. + - Dcom sun. management . j nxr enot e. por t =1098

+ -Dcom sun. managenent . j nxr enot e. aut henti cat e=fal se + -

Dcom sun. nanagenent . j nxrenot e. ssl =f al se

Now, you can use any JMX client to view the statistics. JDK 5.0 or later provides a
standard client that you can use. Simply open a command prompt, make sure the JDK

bi n directory is in your path, and execute the j consol e command. This should bring
up a window allowing you to select one of the local JMX-enabled applications currently
running, or to enter a remote (or local) host and port, e.g. localhost:1098. The next screen
will show a summary of information about the Java process that you connected to. Click

106 Application Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.cas_processors.individual.deployment_parameters
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html
http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

Monitoring AE Performance using JMX

on the “MBeans” tab, then expand “org.apache.uima” in the tree at the left. You should
see a view like this:

| s J2SE 5.0 Monitoring & Management Console Q@]
Connection Window
[[] 67aiocalhost : i i : i &
Summary | Memory | Threads | Classes | MBeans | VM |
MBeans
=4 Tree Attributes | Operations | Nofifications | info |
e 9 UMimplementation " Name T Vol
¢ (= com.ibm.uima [AnatysisTime 10
0 LS WU Cmaao e BatcnProcessCompleteTime 0
¢ [VIMA Meeting Detector TAE Componet ([CASesPerSecond _ |700
@ WeelingDetector |CollectionProcessCompleteTi.. 0)
3 MeetingDetector Components Name TutorialDateTime Annatator
@ DateTime| [NumberOfCASesProcessed 7
@ Meeting |SericeCallTime 0

@ RoomMumber
@ _FlowController
@ UimaAcromymannotator
i@ LUimamestingAnnotator
& _FlowCantroller
o= 29 javalang
&= [java.util logging

Each of the nodes under “or g. apache. ui ma” in the tree represents one of the UIMA
Analysis Engines in the application that you connected to. You can select one of the
analysis engines to view its performance statistics in the view at the right.

Probably the most useful statistic is “CASes Per Second”, which is the number of CASes
that this AE has processed divided by the amount of time spent in the AE's process
method, in seconds. Note that this is the total elapsed time, not CPU time. Even so, it can
be useful to compare the “CASes Per Second” numbers of all of your Analysis Engines to
discover where the bottlenecks occur in your application.

The Anal ysi sTi me, Bat chPr ocessConpl et eTi e, and

Col | ecti onProcessConpl et eTi me properties show the total elapsed time,

in milliseconds, that has been spent in the AnalysisEngine's pr ocess(),

bat chProcessConpl ete(), and col | ectionProcessConpl et e() methods, respectively.
(Note that for CAS Multipliers, time spent in the hasNext () and next () methods is also
counted towards the AnalysisTime.)

Note that once your UIMA application terminates, you can no longer view the statistics
through the JMX console. If you want to use JMX to view processes that have completed,
you will need to write your application so that the JVM remains running after processing
completes, waiting for some user signal before terminating.

It is possible to override the default JMX MBean names UIMA uses, for example to
better organize the UIMA MBeans with respect to MBeans exposed by other parts of
your application. This is done using the Anal ysi sEngi ne. PARAM_MBEAN_NAME_PREFI X
additional parameter when creating your AnalysisEngine:

UIMA Version 2.3.0 Application Developer's Guide 107

Performance Tuning Options

//set up Map with custom JMX MBean nanme prefix

Map paramvap = new HashMap();

par amvap. put (Anal ysi sEngi ne. PARAM_MBEAN_NANVE_PREFI X,
"org. nyorg: cat egor y=MyApp") ;

/'l create Anal ysis Engine
Anal ysi séngi ne ae =
U MAFr anewor k. pr oduceAnal ysi sengi ne(speci fier, paramvap);

Similary, you can use the Anal ysi sEngi ne. PARAM_MBEAN_SERVER parameter to specify a
particular instance of a JMX MBean Server with which UIMA should register the MBeans.
If no specified then the default is to register with the platform MBeanServer (Java 5+ only).

More information on JMX can be found in the Java 5 documentation.

3.9. Performance Tuning Options

There are a small number of performance tuning options available to influence the
runtime behavior of UIMA applications. Performance tuning options need to be set
programmatically when an analysis engine is created. You simply create a Java Properties
object with the relevant options and pass it to the UIMA framework on the call to create
an analysis engine. Below is an example.

XML.Par ser parser = U MAFranewor k. get XM_Par ser () ;
Resour ceSpeci fier spec = parser. parseResourceSpecifi er(
new XM.I nput Sour ce(descriptorFile));
/'l Create a new properties object to hold the settings.
Properties performanceTuni ngSettings = new Properties();
/1 Set the initial CAS heap size.
per f or manceTuni ngSet ti ngs. set Property(
U MAFr amewor k. CAS | NI TI AL_HEAP_SI ZE,
"1000000");
/1 Disable JCas cache.
per f or manceTuni ngSetti ngs. set Property(
Ul MAFr anewor k. JCAS_CACHE_ENABLED,
"false");
/'l Create a wrapper properties object that can
/1 be passed to the framework.
Properties additional Parans = new Properties();
/1l Set the performance tuning properties as value to
/1l the appropriate paraneter.
addi ti onal Par ans. put (
Resour ce. PARAM PERFORVMANCE_TUNI NG_SETTI NGS,
per f or manceTuni ngSet ti ngs) ;
/Il Create the analysis engine with the paraneters.
/'l The second, unused argunent here is a custom
/'l resource manager.

? http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html#package_description

108 Application Developer's Guide UIMA Version 2.3.0

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html#package_description
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html#package_description

Performance Tuning Options

thi s. ae = U MAFr anewor k. pr oduceAnal ysi sEngi ne(
spec, null, additional Parans);

The following options are supported:

* Ul MAFr anewor k. JCAS_CACHE_ENABLED: allows you to disable the JCas cache
(true/false). The JCas cache is an internal datastructure that caches any JCas object
created by the CAS. This may result in better performance for applications that
make extensive use of the JCas, but also incurs a steep memory overhead. If you're
processing large documents and have memory issues, you should disable this
option. In general, just try running a few experiments to see what setting works
better for your application. The JCas cache is enabled by default.

* Ul MAFr anewor k. CAS_I NI TI AL_HEAP_SI ZE: set the initial CAS heap size in number
of cells (integer valued). The CAS uses 32bit integer cells, so four times the initial
size is the approximate minimum size of the CAS in bytes. This is another space/
time trade-off as growing the CAS heap is relatively expensive. On the other
hand, setting the initial size too high is wasting memory. Unless you know you are
processing very small or very large documents, you should probably leave this
option unchanged.

* Ul MAFr amewor k. PROCESS_TRACE_ENABLED: enable the process trace mechanism
(true/false). When enabled, UIMA tracks the time spent in individual components
of an aggregate AE or CPE. For more information, see the API documentation of
org. apache. ui ma. util.ProcessTrace.

* Ul MAFr anewor k. SOCKET_KEEPALI VE_ENABLED: enable socket KeepAlive (true/false).
This setting is currently only supported by Vinci clients. Defaults to t r ue.

UIMA Version 2.3.0 Application Developer's Guide 109

Chapter 4. Flow Controller Developer's Guide

A Flow Controller is a component that plugs into an Aggregate Analysis Engine. When
a CAS s input to the Aggregate, the Flow Controller determines the order in which the
components of that aggregate are invoked on that CAS. The ability to provide your own
Flow Controller implementation is new as of release 2.0 of UIMA.

Flow Controllers may decide the flow dynamically, based on the contents of the CAS.
So, as just one example, you could develop a Flow Controller that first sends each CAS
to a Language Identification Annotator and then, based on the output of the Language
Identification Annotator, routes that CAS to an Annotator that is specialized for that
particular language.

4.1. Developing the Flow Controller Code

4.1.1. Flow Controller Interface Overview

Flow Controller implementations should extend from the

JCasFl owControl | er _I npl Base or CasFl owControl | er _I npl Base classes, depending
on which CAS interface they prefer to use. As with other types of components, the Flow
Controller ImplBase classes define optionali ni ti al i ze, destroy, and reconfi gure
methods. They also define the required method conput eFl ow.

The conput eFl owmethod is called by the framework whenever a new CAS enters

the Aggregate Analysis Engine. It is given the CAS as an argument and must return

an object which implements the FI owinterface (the Flow object). The Flow Controller
developer must define this object. It is the object that is responsible for routing this
particular CAS through the components of the Aggregate Analysis Engine. For
convenience, the framework provides basic implementation of flow objects in the classes
CasFlow_ImplBase and JCasFlow_ImplBase; use the JCas one if you are using the JCas
interface to the CAS.

The framework then uses the Flow object and calls its next () method, which returns a
St ep object (implemented by the UIMA Framework) that indicates what to do next with
this CAS next. There are three types of steps currently supported:

* Si npl eSt ep, which specifies a single Analysis Engine that should receive the CAS
next.

* Paral | el St ep, which specifies that multiple Analysis Engines should receive the
CAS next, and that the relative order in which these Analysis Engines execute
does not matter. Logically, they can run in parallel. The runtime is not obligated to
actually execute them in parallel, however, and the current implementation will
execute them serially in an arbitrary order.

* Fi nal St ep, which indicates that the flow is completed.

Flow Controller Developer's Guide 111

Example Code

After executing the step, the framework will call the Flow object's next () method again
to determine the next destination, and this will be repeated until the Flow Object indicates
that processing is complete by returning a Fi nal St ep.

The Flow Controller has access to a FI owCont r ol | er Cont ext , which is a subtype of

U maCont ext . In addition to the configuration parameter and resource access provided
by a Ui maCont ext, the Fl owCont r ol | er Cont ext also gives access to the metadata for
all of the Analysis Engines that the Flow Controller can route CASes to. Most Flow
Controllers will need to use this information to make routing decisions. You can get a
handle to the FI owCont r ol | er Cont ext by calling the get Cont ext () method defined
in JCasFl owCont r ol | er _I npl Base and CasFl owCont rol | er _I npl Base. Then, the

Fl owCont rol | er Cont ext . get Anal ysi sEngi neMet aDat aMap method can be called to get
a map containing an entry for each of the Analysis Engines in the Aggregate. The keys
in this map are the same as the delegate analysis engine keys specified in the aggregate
descriptor, and the values are the corresponding Anal ysi sEngi neMet aDat a objects.

Finally, the Flow Controller has optional methods addAnal ysi sEngi nes and

r enmoveAnal ysi sEngi nes. These methods are intended to notify the Flow Controller if
new Analysis Engines are available to route CASes to, or if previously available Analysis
Engines are no longer available. However, the current version of the Apache UIMA
framework does not support dynamically adding or removing Analysis Engines to/from
an aggregate, so these methods are not currently called. Future versions may support this
feature.

4.1.2.

Example Code

This section walks through the source code of an example Flow Controller that simluates
a simple version of the “Whiteboard” flow model. At each step of the flow, the Flow
Controller looks it all of the available Analysis Engines that have not yet run on this CAS,
and picks one whose input requirements are satisfied.

The Java class for the example is
or g. apache. ui ma. exanpl es. f| ow. Wi t eboar dFl owCont r ol | er and the source code is
included in the UIMA SDK under the exanpl es/ sr ¢ directory.

4.1.2.1. The WhiteboardFlowController Class

public class \WiteboardFl owControll er
ext ends CasFl owControl | er I npl Base {
publ i c Fl ow comput eFl om(CAS aCAS)
t hrows Anal ysi sEngi neProcessException {
Wi t eboar dFl ow fl ow = new Wi t eboar dFl ow() ;
/1 As of release 2.3.0, the following is not needed,
/1 because the framework does this automatically
/1 flow setCas(aCAS);

return flow

112

Flow Controller Developer's Guide UIMA Version 2.3.0

Example Code

cl ass Wit eboar dFl ow ext ends CasFl ow_| npl Base {
/] Discussed Later

}
}

The Wi t eboar dFl owCont r ol | er extends from CasFl owControl | er | npl Base and
implements the conput eFl owmethod. The implementation of the conput eFl owmethod
is very simple; it just constructs a new Wi t eboar dFl ow object that will be responsible for
routing this CAS. The framework will add a handle to that CAS which it will later use to
make its routing decisions.

Note that we will have one instance of Wi t eboar dFl owper CAS, so if there are multiple
CASes being simultaneously processed there will not be any confusion.

4.1.2.2. The WhiteboardFlow Class

cl ass Wit eboar dFl ow ext ends CasFl ow_| npl Base {
private Set mAl readyCall ed = new HashSet ();

public Step next() throws Anal ysi SEngi neProcessException {
/1l Get the CAS that this Flow object is responsible for routing.
/'l Each Flow instance is responsible for a single CAS.
CAS cas = getCas();

/1 iterate over avail abl e AEs
Iterator aelter = getContext().getAnal ysi sEngi neMet aDat aMap() .
entrySet().iterator();
while (aelter.hasNext()) {
Map. Entry entry = (Map. Entry) aelter.next();
/1 skip AEs that were already called on this CAS
String aeKey = (String) entry. getKey();
if (!mAl readyCall ed. contai ns(aekey)) {
/1 check for satisfied input capabilities
/1 (i.e. the CAS contains at |east one instance
/'l of each required input
Anal ysi sengi neMet aData nmd =
(Anal ysi sengi neMet aDat a) entry. get Val ue();
Capability[] caps = nd. get Capabilities();
bool ean satisfied = true;

for (int i =0; i < caps.length; i++) {
satisfied = inputsSatisfied(caps[i].getlnputs(), cas);
if (satisfied)
br eak;
}

if (satisfied) {
mAl r eadyCal | ed. add(aeKey) ;
i f (mLogger.isLoggabl e(Level . FINEST)) ({
get Cont ext (). get Logger (). | og(Level . FI NEST,
"Next AE is: " + aeKey);

}
return new Si npl eSt ep(aekKey);

UIMA Version 2.3.0 Flow Controller Developer's Guide 113

Creating the Flow Controller Descriptor

}
}
}

/'l no appropriate AEs to call - end of flow
get Cont ext () . get Logger (). | og(Level . FI NEST, "Fl ow Conplete.");
return new Final Step();

}

private bool ean i nputsSatisfied(TypeO Feature[] alnputs, CAS aCAS) {
/linplenmentation detail; see the actual source code
}
}

Each instance of the Wi t eboar dFl owCont rol | er is responsible for routing a single CAS.
A handle to the CAS instance is available by calling the get Cas() method, whichis a
standard method defined on the CasFl ow_| npl Base superclass.

Each time the next method is called, the Flow object iterates over the metadata

of all of the available Analysis Engines (obtained via the call to get Cont ext ().

get Anal ysi sEngi neMet aDat aMap) and sees if the input types declared in an
AnalysisEngineMetaData object are satisfied by the CAS (that is, the CAS contains at least
one instance of each declared input type). The exact details of checking for instances of
types in the CAS are not discussed here — see the WhiteboardFlowController.java file for
the complete source.

When the Flow object decides which AnalysisEngine should be called next, it indicates
this by creating a SimpleStep object with the key for that AnalysisEngine and returning it:

return new Si npl eSt ep(aekKey);

The Flow object keeps a list of which Analysis Engines it has invoked in the

mAl r eadyCal | ed field, and never invokes the same Analysis Engine twice. Note this is
not a hard requirement. It is acceptable to design a FlowController that invokes the same
Analysis Engine more than once. However, if you do this you must make sure that the
flow will eventually terminate.

If there are no Analysis Engines left whose input requirements are satisfied, the Flow
object signals the end of the flow by returning a FinalStep object:

return new Fi nal Step();

Also, note the use of the logger to write tracing messages indicating the decisions made
by the Flow Controller. This is a good practice that helps with debugging if the Flow
Controller is behaving in an unexpected way.

4.2. Creating the Flow Controller Descriptor

To create a Flow Controller Descriptor in the CDE, use File —~ New - Other — UIMA -
Flow Controller Descriptor File:

114 Flow Controller Developer's Guide UIMA Version 2.3.0

Creating the Flow Controller Descriptor

j I.w!:.-f W

Select a wizard

Wizards:

H-E= UIMA
b EF Analysis Engine Descriptor File
b % Type System Descriptor File
[=l-[= Collection Processing Components
E{" Cas Consumer Descriptor File
. Bf Cas Initializer Descriptor File
. Ef Collection Reader Descriptor File
[=-[== Importable Farts

E{" Flow Controller Descriptor File
Index Collection Descriptor File
Type Priorities Descriptor File

< I

Ef External Resource and Bindings (Resource Manager Configuration) Descript

8]

= Back Mext =

Firiish | Cancel |

This will bring up the Overview page for the Flow Controller Descriptor:

UIMA Version 2.3.0

Flow Controller Developer's Guide

115

Adding Flow Controller to an Aggregate

B scrptorz - 33 =0
| flowControlerDescriptor2, xml

Overview 2t

* Implementation Details

» Runtime Information

Thic gection desoribes information about how to run the component
O updztes the CaS
O multinle deployment allawed

Marme of the Java dase fie

Browse !

« (werall Identfication Information
This section spedfies the basic identfication information for this descriptor

Marme fowControlerDescrplor2
Viersion 1,0

Vendor

Cescripbon:

| Owverview _F‘ararrle!'ers- Farameter Sel'l:hgs- Type E'r'El'E:'ﬂ. Capshiities: Indeves Resnurces | Soircs |

Type in the Java class name that implements the Flow Controller, or use the “Browse”
button to select it. You must select a Java class that implements the FI owContr ol | er
interface.

Flow Controller Descriptors are very similar to Primitive Analysis Engine Descriptors —
for example you can specify configuration parameters and external resources if you wish.

If you wish to edit a Flow Controller Descriptor by hand, see section Section 2.5, “Flow
Controller Descriptors” in UIMA References for the syntax.

4.3. Adding a Flow Controller to an Aggregate
Analysis Engine

To use a Flow Controller you must add it to an Aggregate Analysis Engine. You can
only have one Flow Controller per Aggregate Analysis Engine. In the Component
Descriptor Editor, the Flow Controller is specified on the Aggregate page, as a choice in
the flow control kind - pick “User-defined Flow”. When you do, the Browse and Search
buttons underneath become active, and allow you to specify an existing Flow Controller
Descriptor, which when you select it, will be imported into the aggregate descriptor.

116 Flow Controller Developer's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.component_descriptor.flow_controller
../references/references.pdf#ugr.ref.xml.component_descriptor.flow_controller

Adding Flow Controller to CPE

= Component Engine Flow

Choose a flow type and describe the execution order of your engines,
The table shows the delegates using their key names,

Flow Kind: | User-defined Flow |-

Flow Contraller: descriptors/flowCHr flowControllerDescriptor. xml e

Key Mame: ﬁu:u'.wCDnh'DllerDescriptnr
Search

Eﬂaecnnﬁguraﬁnn 3
@aecnnﬁguraﬁnn&
Eﬂaecnnﬁguraﬁnn 32
aecnnﬁguraﬁnn 3

gE i

The key name is created automatically from the name element in the Flow Controller
Descriptor being imported. If you need to change this name, you can do so by switching to
the “Source” view using the bottom tabs, and editing the name in the XML source.

If you edit your Aggregate Analysis Engine Descriptor by hand, the syntax for adding a
Flow Controller is:

<del egat eAnal ysi sEngi neSpeci fi ers>

</ del egat eAnal ysi sEngi neSpeci fi er s>

<fl owControl | er key="[String]”>
<import .../>

</flowController>

As usual, you can use either in import by location or import by name — see Section 2.2,
“Imports” in UIMA References.

The key that you assign to the FlowController can be used elsewhere in the Aggregate
Analysis Engine Descriptor — in parameter overrides, resource bindings, and Sofa
mappings.

4.4. Adding a Flow Controller to a Collection
Processing Engine

Flow Controllers cannot be added directly to Collection Processing Engines. To use a Flow
Controller in a CPE you first need to wrap the part of your CPE that requires complex
flow control into an Aggregate Analysis Engine, and then add the Aggregate Analysis
Engine to your CPE. The CPE's deployment and error handling options can then only be
configured for the entire Aggregate Analysis Engine as a unit.

UIMA Version 2.3.0 Flow Controller Developer's Guide 117

../references/references.pdf#ugr.ref.xml.component_descriptor.imports
../references/references.pdf#ugr.ref.xml.component_descriptor.imports

Using Flow Controllers with CAS Multipliers

4.5. Using Flow Controllers with CAS Multipliers

If you want your Flow Controller to work inside an Aggregate Analysis Engine that
contains a CAS Multiplier (see Chapter 7, CAS Multiplier Developer’s Guide [139]), there
are additional things you must consider.

When your Flow Controller routes a CAS to a CAS Multiplier, the CAS Multiplier may
produce new CASes that then will also need to be routed by the Flow Controller. When a
new output CAS is produced, the framework will call the newCasPr oduced method on the
Flow object that was managing the flow of the parent CAS (the one that was input to the
CAS Multiplier). The newCasPr oduced method must create a new Flow object that will be
responsible for routing the new output CAS.

In the CasFl ow_I| npl Base and JCasFl ow_| npl Base classes, the newCasPr oduced method
is defined to throw an exception indicating that the Flow Controller does not handle CAS
Multipliers. If you want your Flow Controller to properly deal with CAS Multipliers you
must override this method.

If your Flow class extends CasFl ow_| npl Base, the method signature to override is:

prot ect ed Fl ow newCasProduced(CAS newCut put Cas, String producedBy)

If your Flow class extends JCasFl ow_| npl Base, the method signature to override is:

prot ect ed Fl ow newCasProduced(JCas newCQut put Cas, String producedBy)

Also, there is a variant of Fi nal St ep which can only be specified for output CASes
produced by CAS Multipliers within the Aggregate Analysis Engine containing the Flow
Controller. This version of Fi nal St ep is produced by the calling the constructor with

a true argument, and it causes the CAS to be immediately released back to the pool.

No further processing will be done on it and it will not be output from the aggregate.
This is the way that you can build an Aggregate Analysis Engine that outputs some

new CASes but not others. Note that if you never want any new CASes to be output
from the Aggregate Analysis Engine, you don't need to use this; instead just declare

<out put sNewCASes>f al se</ out put sNewCASes> in your Aggregate Analysis Engine
Descriptor as described in Section 7.3.3, “Aggregate CAS Multipliers” [147].

For more information on how CAS Multipliers interact with Flow Controllers, see
Section 7.3.2, “CAS Multipliers and Flow Control” [145].

4.6. Continuing the Flow When Exceptions Occur

If an exception occurs when processing a CAS, the framework may call the method

bool ean conti nueOnFailure(String fail edAeKey, Exception failure)

118 Flow Controller Developer's Guide UIMA Version 2.3.0

Continuing the Flow When Exceptions Occur

on the Flow object that was managing the flow of that CAS. If this method returns t r ue,
then the framework may continue to call the next () method to continue routing the CAS.
If this method returns f al se (the default), the framework will not make any more calls to
the next () method.

In the case where the last Step was a ParallelStep, if at least one of the destinations
resulted in a failure, then cont i nueOnFai | ur e will be called to report one of the failures.
If this method returns true, but one of the other destinations in the ParallelStep resulted
in a failure, then the cont i nueOnFai | ur e method will be called again to report the next
failure. This continues until either this method returns false or there are no more failures.

Note that it is possible for processing of a CAS to be aborted without this method being
called. This method is only called when an attempt is being made to continue processing
of the CAS following an exception, which may be an application configuration decision.

In any case, if processing is aborted by the framework for any reason, including because
cont i nueOnFai | ur e returned false, the framework will call the Fl ow. abor t ed() method
to allow the Flow object to clean up any resources.

For an example of how to continue after an exception, see the example code
or g. apache. ui ma. exanpl es. f | ow. AdvancedFi xedFl owCont r ol | er, in the exanpl es/
sr ¢ directory of the UIMA SDK. This exampe also demonstrates the use of Par al | el St ep.

UIMA Version 2.3.0 Flow Controller Developer's Guide 119

Chapter 5. Annotations, Artifacts, and Sofas

Up to this point, the documentation has focused on analyzing strings of Unicode text,
producing subtypes of Annotations which reference offsets in those strings. This chapter
generalizes this concept and shows how other kinds of artifacts can be handled, including
non-text things like audio and images, and how you can define your own kinds of
“annotations” for these.

5.1. Terminology

5.1.1. Artifact

The Artifact is the unstructured thing being analyzed by an annotator. It could be an
HTML web page, an image, a video stream, a recorded audio conversation, an MPEG-4
stream, etc. Artifacts are often restructured in the course of processing to facilitate
particular kinds of analysis. For instance, an HTML page may be converted into a “de-
tagged” version. Annotators at different places in the pipeline may be analyzing different
versions of the artifact.

5.1.2. Subject of Analysis — Sofa

Each representation of an Artifact is called a Subject of Analysis, abbreviated using the
acronym “Sofa” which stands for Subject OF Analysis. Annotation metadata, which
have explicit designations of sub-regions of the artifact to which they apply, are always
associated with a particular Sofa. For instance, an annotation over text specifies two
features, the begin and end, which represent the character offsets into the text string Sofa
being analyzed.

Other examples of representations of Artifacts, which could be Sofas include: An HTML
web page, a detagged web page, the translated text of that document, an audio or video
stream, closed-caption text from a video stream, etc.

Often, there is one Sofa being analyzed in a CAS. The next chapter will show how UIMA
facilitates working with multiple representations of an artifact at the same time, in the
same CAS.

5.2. Formats of Sofa Data

Sofa data can be Java Unicode Strings, Feature Structure arrays of primitive types, or a
URI which references remote data available via a network connection.

The arrays of primitive types can be things like byte arrays or float arrays, and are
intended to be used for artifacts like audio data, image data, etc.

Annotations, Artifacts & Sofas 121

Setting and Accessing Sofa Data

The URI form holds a URI specification String.

Note: Sofa data can be "serialized" using an XML format; when it is, the String
data being serialized must not include invalid XML characters. See Section 8.3.1,
“Character Encoding Issues with XML Serialization” [157].

5.3. Setting and Accessing Sofa Data

5.3.1. Setting Sofa Data

When a CAS is created, you can set its Sofa Data, just one time; this property insures that
metadata describing regions of the Sofa remain valid. As a consequence, the following
methods that set data for a given Sofa can only be called once for a given Sofa.

The following methods on the CAS set the Sofa Data to one of the 3 formats. Assume that
the variable “aCas” holds a reference to a CAS:

aCas. set Sof aDat aSt ri ng(docunent _text _string, mnme_type_string);
aCas. set Sof aDat aArray(feature_structure_primtive_array, mne_type_string);
aCas. set Sof aDat aURI (uri _string, mnme_type_string);

In addition, the method aCas. set Docunent Text (docunent _t ext _string) may still
be used, and is equivalent to set Sof aDat aStri ng(string, "text").The mime typeis
currently not used by the UIMA framework, but may be set and retrieved by user code.

Feature Structure primitive arrays are all the UIMA Array types except arrays of Feature
Structures, Strings, and Booleans. Typically, these are arrays of bytes, but can be other
types, such as floats, longs, etc.

The URI string should conform to the standard URI format.

5.3.2. Accessing Sofa Data

The analysis algorithms typically work with the Sofa data. The following methods on the
CAS access the Sofa Data:

String aCas. get Docunent Text () ;
String aCas. get Sof aDat aStri ng() ;
Feat ureStructure aCas. get Sof aDat aArray() ;
String aCas. get Sof aDat aURI () ;
String aCas. get Sof aM meType();

The get Docunrent Text and get Sof aDat aSt ri ng return the same text string. The

get Sof aDat aURI returns the URI itself, not the data the URI is pointing to. You can use
standard Java I/O capabilities to get the data associated with the URI, or use the UIMA
Framework Streaming method described next.

122

Annotations, Artifacts & Sofas UIMA Version 2.3.0

Accessing Sofa Data using a Java Stream

5.3.3. Accessing Sofa Data using a Java Stream

The framework provides a consistent method for accessing the Sofa data, independent
of it being stored locally, or accessed remotely using the URI. Get a Java InputStream
instance from the Sofa data using;:

I nput Stream i nput St ream = aCas. get Sof aDat aSt rean() ;

e If the data is local, this method returns a ByteArrayInputStream. This stream
provides bytes.

e If the Sofa data was set using setDocumentText or setSofaDataString, the
String is converted to bytes by using the UTF-8 encoding.

e If the Sofa data was set as a DataArray, the bytes in the data array are
serialized, high-byte first.

¢ If the Sofa data was specified as a URI, this method returns the handle
from url.openStream(). Java offers built-in support for several URI schemes
including “FILE:”, “HTTP:”, “FTP:” and has an extensible mechanism,
URLSt r eanHandl er Fact or y, for customizing access to an arbitrary
URI See more details at http://java.sun.com/j2se/1.5.0/docs/api/java/net/
URLStreamHandlerFactory.html .

5.4. The Sofa Feature Structure

Information about a Sofa is contained in a special built-in Feature Structure of type

ui ma. cas. Sof a. This feature structure is created and managed by the UIMA Framework;
users must not create it directly. Although these Sofa type instances are implemented

as standard feature structures, generic CAS APIs can not be used to create Sofas or set their
features. Instead, Sofas are created implicitly by the creation of new CAS views. Similarly,
Sofa features are set by CAS methods such as cas. set Docunent Text () .

Features of the Sofa type include

¢ SofalD: Every Sofa in a CAS has a unique SofalD. SofalDs are the primary handle
for access. This ID is often the same as the name string given to the Sofa by the
developer, but it can be mapped to a different name (see Section 6.4, “Sofa Name
Mapping” [129].

* Mime type: This string feature can be used to describe the type of the data
represented by a Sofa. It is not used by the framework; the framework provides
APIs to set and get its value.

e Sofa Data: The Sofa data itself. This data can be resident in the CAS or it can be a
reference to data outside the CAS.

UIMA Version 2.3.0 Annotations, Artifacts & Sofas 123

http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLStreamHandlerFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLStreamHandlerFactory.html

Annotations

5.5. Annotations

Annotators add meta data about a Sofa to the CAS. It is often useful to have this metadata
denote a region of the Sofa to which it applies. For instance, assuming the Sofa is a String,
the metadata might describe a particular substring as the name of a person. The built-in
UIMA type, uima.tcas.Annotation, has two extra features that enable this - the begin and
end features - which denote a character position offset into the text string being analyzed.

The concept of “annotations” can be generalized for non-string kinds of Sofas. For
instance, an audio stream might have an audio annotation which describes sounds regions
in terms of floating point time offsets in the Sofa. An image annotation might use two
pairs of x,y coordinates to define the region the annotation applies to.

5.5.1.

Built-in Annotation types

The built-in CAS type, ui ma. t cas. Annot at i on, is just one kind of definition of an
Annotation. It was designed for annotating text strings, and has begin and end features
which describe which substring of the Sofa being annotated.

For applications which have other kinds of Sofas, the UIMA developer will design their
own kinds of Annotation types, as needed to describe an annotation, by declaring new
types which are subtypes of ui ma. cas. Annot at i onBase. For instance, for images, you
might have the concept of a rectangular region to which the annotation applies. In this
case, you might describe the region with 2 pairs of x, y coordinates.

5.5.2. Annotations have an associated Sofa

Annotations are always associated with a particular Sofa. In subsequent chapters, you
will learn how there can be multiple Sofas associated with an artifact; which Sofa an
annotation refers to is described by the Annotation feature structure itself.

All annotation types extend from the built-in type uima.cas.AnnotationBase. This type has
one feature, a reference to the Sofa associated with the annotation. This value is currently
used by the Framework to support the getCoveredText() method on the annotation
instance - this returns the portion of a text Sofa that the annotation spans. It also is used to
insure that the Annotation is indexed only in the CAS View associated with this Sofa.

5.6. AnnotationBase

A built-in type, ui ma. cas. Annot at i onBase, is provided by UIMA to allow users to
extend the Annotation capabilities to different kinds of Annotations. The Annot at i onBase
type has one feature, named sof a, which holds a reference to the Sof a feature

structure with which this annotation is associated. The sof a feature is automatically

set when creating an annotation (meaning — any type derived from the built-in

ui ma. cas. Annot at i onBase type); it should not be set by the user.

124

Annotations, Artifacts & Sofas UIMA Version 2.3.0

AnnotationBase

There is one method, get Vi ew(), provided by Annot at i onBase that returns the CAS View
for the Sofa the annotation is pointing at. Note that this method always returns a CAS,
even when applied to JCas annotation instances.

The built-in type ui ma. t cas. Annot at i on extends ui ma. cas. Annot at i onBase and

adds two features, a begin and an end feature, which are suitable for identifying a span

in a text string that the annotation applies to. Users may define other extensions to

Annot at i onBase with alternative specifications that can denote a particular region within
the subject of analysis, as appropriate to their application.

UIMA Version 2.3.0 Annotations, Artifacts & Sofas 125

Chapter 6. Multiple CAS Views of an Artifact

UIMA provides an extension to the basic model of the CAS which supports analysis of
multiple views of the same artifact, all contained with the CAS. This chapter describes the
concepts, terminology, and the API and XML extensions that enable this.

Multiple CAS Views can simplify things when different versions of the artifact are needed
at different stages of the analysis. They are also key to enabling multimodal analysis
where the initial artifact is transformed from one modality to another, or where the
artifact itself is multimodal, such as the audio, video and closed-captioned text associated
with an MPEG object. Each representation of the artifact can be analyzed independently
with the standard UIMA programming model; in addition, multi-view components and
applications can be constructed.

UIMA supports this by augmenting the CAS with additional light-weight CAS objects,
one for each view, where these objects share most of the same underlying CAS, except for
two things: each view has its own set of indexed Feature Structures, and each view has its
own subject of analysis (Sofa) - its own version of the artifact being analyzed. The Feature
Structure instances themselves are in the shared part of the CAS; only the entries in the
indexes are unique for each CAS view.

All of these CAS view objects are kept together with the CAS, and passed as a unit
between components in a UIMA application. APIs exist which allow components and
applications to switch among the various view objects, as needed.

Feature Structures may be indexed in multiple views, if necessary. New methods on CAS
Views facilitate adding or removing Feature Structures to or from their index repositories:

aVi ew. addFsTol ndexes(aFeat ureStruct ure)
aVi ew. r enoveFsFr onl ndexes(aFeat ureSt ruct ur e)

specify the view in which this Feature Structure should be added to or removed from the
indexes.

6.1. CAS Views and Sofas

Sofas (see Section 5.1.2, “Subject of Analysis — Sofa” [121]) and CAS Views are linked.
In this implementation, every CAS view has one associated Sofa, and every Sofa has one
associated CAS View.

6.1.1.

Naming CAS Views and Sofas

The developer assigns a name to the View / Sofa, which is a simple string (following the
rules for Java identifiers, usually without periods, but see special exception below). These
names are declared in the component XML metadata, and are used during assembly and
by the runtime to enable switching among multiple Views of the CAS at the same time.

Multiple CAS Views 127

Multi/Single View parts in Applications

Note: The name is called the Sofa name, for historical reasons, but it applies
equally to the View. In the rest of this chapter, we'll refer to it as the Sofa name.

Some applications contain components that expect a variable number of Sofas as input or
output. An example of a component that takes a variable number of input Sofas could be
one that takes several translations of a document and merges them, where each translation
was in a separate Sofa.

You can specify a variable number of input or output sofa names, where each name
has the same base part, by writing the base part of the name (with no periods),
followed by a period character and an asterisk character (.*). These denote sofas that
have names matching the base part up to the period; for example, names such as
base_nanme_part. TTX_3d would match a specification of base_name_part. *.

6.1.2.

Multi-View, Single-View components & applications

Components and applications can be written to be Multi-View or Single-View. Most
components used as primitive building blocks are expected to be Single-View. UIMA
provides capabilities to combine these kinds of components with Multi-View components
when assembling analysis aggregates or applications.

Single-View components and applications use only one subject of analysis, and one CAS
View. The code and descriptors for these components do not use the facilities described in
this chapter.

Conversely, Multi-View components and applications are aware of the possibility of
multiple Views and Sofas, and have code and XML descriptors that create and manipulate
them.

6.2. Multi-View Components

6.2.1.

How UIMA decides if a component is Multi-View

Every UIMA component has an associated XML Component Descriptor. Multi-View
components are identified simply as those whose descriptors declare one or more Sofa
names in their Capability sections, as inputs or outputs. If a Component Descriptor does
not mention any input or output Sofa names, the framework treats that component as a
Single-View component.

A Multi-View component is passed a special kind of a CAS object, called a base CAS,
which it must use to switch to the particular view it wishes to process. The base CAS
object itself has no Sofa and no ability to use Indexes; only the views have that capability.

6.2.2.

Multi-View: additional capabilities

Additional capabilities provided for components and applications aware of the
possibilities of multiple Views and Sofas include:

128

Multiple CAS Views UIMA Version 2.3.0

Component XML metadata

* Creating new Views, and for each, setting up the associated Sofa data
* Getting a reference to an existing View and its associated Sofa, by name

* Specifying a view in which to index a particular Feature Structure instance

6.2.3. Component XML metadata

Each Multi-View component that creates a Sofa or wants to switch to a specific previously
created Sofa must declare the name for the Sofa in the capabilities section. For example,

a component expecting as input a web document in html format and creating a plain text
document for further processing might declare:

<capabilities>
<capability>
<i nput s/ >
<out put s/ >
<i nput Sof as>
<sof aName>r awCont ent </ sof aNanme>
</'i nput Sof as>
<out put Sof as>
<sof aName>det agCont ent </ sof aNane>
</ out put Sof as>
</ capability>
</ capabilities>

Details on this specification are found in Chapter 2, Component Descriptor Reference in
UIMA References. The Component Descriptor Editor supports Sofa declarations on the
Section 1.9, “Capabilities Page” in UIMA Tools Guide and Reference.

6.3. Sofa Capabilities and APIs for Applications

In addition to components, applications can make use of these capabilities. When an
application creates a new CAS, it also creates the initial view of that CAS - and this view

is the object that is returned from the create call. Additional views beyond this first one
can be dynamically created at any time. The application can use the Sofa APIs described in
Chapter 5, Annotations, Artifacts, and Sofas [121] to specify the data to be analyzed.

If an Application creates a new CAS, the initial CAS that is created will be a view named
“_InitialView”. This name can be used in the application and in Sofa Mapping (see the
next section) to refer to this otherwise unnamed view.

6.4. Sofa Name Mapping

Sofa Name mapping is the mechanism which enables UIMA component developers to
choose locally meaningful Sofa names in their source code and let aggregate, collection
processing engine developers, and application developers connect output Sofas created in
one component to input Sofas required in another.

UIMA Version 2.3.0 Multiple CAS Views 129

../references/references.pdf#ugr.ref.xml.component_descriptor
../tools/tools.pdf#ugr.tools.cde.capabilities

Name Mapping in an Aggregate Descriptor

At a given aggregation level, the assembler or application developer defines names for all
the Sofas, and then specifies how these names map to the contained components, using
the Sofa Map.

Consider annotator code to create a new CAS view:

CAS vi ewX = cas.createViewm"X");

Or code to get an existing CAS view:

CAS viewX = cas.getView("X");

Without Sofa name mapping the SofalD for the new Sofa will be “X”. However, if a name
mapping for “X” has been specified by the aggregate or CPE calling this annotator, the
actual SofalD in the CAS can be different.

All Sofas in a CAS must have unique names. This is accomplished by mapping all
declared Sofas as described in the following sections. An attempt to create a Sofa with a
SofalD already in use will throw an exception.

“"or

Sofa name mapping must not use the “.” (period) character. Runtime Sofa mapping maps

names up to the “.” and appends the period and the following characters to the mapped
name.

To get a Java Iterator for all the views in a CAS:

Iterator allViews = cas.getViewlterator();

To get a Java Iterator for selected views in a CAS, for example, views whose name is either
exactly equal to namePrefix or is of the form namePrefix.suffix, where suffix can be any
String:

Iterator soneViews = cas.getViewterator(String nanePrefiXx);

Note: Sofa name mapping is applied to namePrefix.

Sofa name mappings are not currently supported for remote Analysis Engines. See
Section 6.4.5, “Name Mapping for Remote Services” [133].

6.4.1.

Name Mapping in an Aggregate Descriptor

For each component of an Aggregate, name mapping specifies the conversion between
component Sofa names and names at the aggregate level.

Here's an example. Consider two Multi-View annotators to be assembled into an
aggregate which takes an audio segment consisting of spoken English and produces a
German text translation.

130

Multiple CAS Views UIMA Version 2.3.0

Name Mapping in a CPE Descriptor

The first annotator takes an audio segment as input Sofa and produces a text transcript as
output Sofa. The annotator designer might choose these Sofa names to be “Audiolnput”
and “Transcribed Text”.

The second annotator is designed to translate text from English to German. This
developer might choose the input and output Sofa names to be “EnglishDocument” and
“GermanDocument”, respectively.

In order to hook these two annotators together, the following section would be added to
the top level of the aggregate descriptor:

<sof aMappi ngs>
<sof avappi ng>
<conponent Key>SpeechToText </ conmponent Key>
<comnponent Sof aNanme>Audi ol nput </ conponent Sof aNanme>
<aggr egat eSof aNane>Segenent edAudi o</ aggr egat eSof aNane>
</ sof aMappi ng>
<sof aMappi ng>
<conponent Key>SpeechToText </ conmponent Key>
<conponent Sof aNanme>Tr anscr i bedText </ conponent Sof aNane>
<aggr egat eSof aNanme>Engl i shTranscri pt </ aggr egat eSof aNane>
</ sof aMappi ng>
<sof aMappi ng>
<conponent Key>Engl i shToGer manTr ansl at or </ conponent Key>
<conponent Sof aNane>Engl i shDocunent </ conponent Sof aNanme>
<aggr egat eSof aNanme>Engl i shTranscri pt </ aggr egat eSof aNane>
</ sof aMappi ng>
<sof aMappi ng>
<conponent Key>Engl i shToGer manTr ansl at or </ conponent Key>
<conponent Sof aNanme>CGer manDocunent </ conponent Sof aNanme>
<aggr egat eSof aNanme>Cer manTr ansl| at i on</ aggr egat eSof aNane>
</ sof aMappi ng>
</ sof aMappi ngs>

The Component Descriptor Editor supports Sofa name mapping in aggregates and
simplifies the task. See Section 1.9.1, “Sofa (and view) name mappings” in UIMA Tools
Guide and Reference for details.

6.4.2. Name Mapping in a CPE Descriptor

The CPE descriptor aggregates together a Collection Reader and CAS Processors
(Annotators and CAS Consumers). Sofa mappings can be added to the following
elements of CPE descriptors: <col | ecti onl terator>, <casl ni tial i zer > and the
<casProcessor >. To be consistent with the organization of CPE descriptors, the maps
for the CPE descriptor are distributed among the XML markup for each of the parts
(collectionlterator, caslnitializer, casProcessor). Because of this the <conponent Key>
element is not needed. Finally, rather than sub-elements for the parts, the XML markup
for these uses attributes. See Section 3.6.1.3, “<sofaNameMappings> Element” in UIMA
References.

UIMA Version 2.3.0 Multiple CAS Views 131

../tools/tools.pdf#ugr.tools.cde.capabilities.sofa_name_mapping
../references/references.pdf#ugr.ref.xml.cpe_descriptor.descriptor.cas_processors.individual.sofa_name_mappings

CAS View for Single-View Parts

Here's an example. Let's use the aggregate from the previous section in a collection
processing engine. Here we will add a Collection Reader that outputs audio segments in
an output Sofa named “nextSegment”. Remember to declare an output Sofa nextSegment
in the collection reader description. We'll add a CAS Consumer in the next section.

<col | ecti onReader >
<col | ectionlterator>
<descri pt or >

</ descri pt or >
<configurati onParaneterSettings>...</configurationParaneterSettings>
<sof aNanmeMappi ngs>
<sof aNameMappi ng conponent Sof aName="next Segnent "
cpeSof aNane=" Segenent edAudi 0"/ >
</ sof aNameMappi ngs>
</col | ectionlterator>
<caslnitializer/>
<col | ecti onReader >

At this point the CAS Processor section for the aggregate does not need any Sofa mapping
because the aggregate input Sofa has the same name, “Segemented Audio”, as is being
produced by the Collection Reader.

6.4.3. Specifying the CAS View for a Single-View
Component

Single-View components receive a Sofa named “_InitialView”, or a Sofa that is mapped to
this name.

For example, assume that the CAS Consumer to be used in our CPE is a Single-View
component that expects the analysis results associated with the input CAS, and that we
want it to use the results from the translated German text Sofa. The following mapping
added to the CAS Processor section for the CPE will instruct the CPE to get the CAS view
for the German text Sofa and pass it to the CAS Consumer:

<casProcessor>

<sof aNameMappi ngs>
<sof aNameMappi ng conponent Sof aName="_Ini ti al Vi ew'
cpeSof aNanme="Ger manTr ansl ati on"/ >
<sof aNameMappi ngs>
</ casProcessor>

An alternative syntax for this kind of mapping is to simply leave out the component sofa
name in this case.

132

Multiple CAS Views UIMA Version 2.3.0

Name Mapping in a UIMA Application

6.4.4. Name Mapping in a UIMA Application

Applications which instantiate UIMA components directly using the UIMAFramework
methods can also create a top level Sofa mapping using the “additional parameters”
capability.
/lcreate a "root" U MA context for your whol e application
Ui maCont ext Admi n root Cont ext =
Ul MAFr amewor k. newUi maCont ext (Ul MAFr amewor k. get Logger (),
U MAFr anewor k. newDef aul t Resour ceManager (),
Ul MAFr amewor k. newConf i gur ati onManager ()) ;

i nput = new XM.I nput Source("test.xm");

desc = Ul MAFr anmewor k. get XMLPar ser () . par seAnal ysi sengi neDescri ption(i nput);

// setup sofa nane mappi ngs using the api

HashMap sof amappi ngs = new HashMap() ;
sof amappi ngs. put ("1 ocal Nanel", "gl obal Nanel");
sof amappi ngs. put ("1 ocal Name2", "gl obal Nane2");

//create a U MA Context for the new AE we are about to create

//first argument is unique key anong all AEs used in the application
U maCont ext Admi n chi | dCont ext = root Cont ext.createChild("nyAE", sofanap);

/linstantiate AE, passing the U MA Context through the additional
/| paranmeters map

Map addi ti onal Parans = new HashMap();
addi ti onal Par ans. put (Resour ce. PARAM Ul MA_CONTEXT, chi |l dCont ext);

Anal ysi sengi ne ae =
U MAFr amewor k. pr oduceAnal ysi sengi ne(desc, addi ti onal Par ans) ;

Sofa mappings are applied from the inside out, i.e., local to global. First, any aggregate
mappings are applied, then any CPE mappings, and finally, any specified using this
“additional parameters” capability.

6.4.5.

Name Mapping for Remote Services

Currently, no client-side Sofa mapping information is passed from a UIMA client to
a remote service. This can cause complications for UIMA services in a Multi-View
application.

Remote Multi-View services will work only if the service is Single-View, or if the Sofa
names expected by the service exactly match the Sofa names produced by the client.

UIMA Version 2.3.0 Multiple CAS Views

133

JCas extensions for Multiple Views

If your application requires Sofa mappings for a remote Analysis Engine, you can
wrap your remotely deployed AE in an aggregate (on the remote side), and specify the
necessary Sofa mappings in the descriptor for that aggregate.

6.5. JCas extensions for Multiple Views

The JCas interface to the CAS can be used with any / all views, as well as the base CAS
sent to Multi-View components. You can always get a JCas object from an existing CAS
object by using the method getJCas(); this call will create the JCas if it doesn't already
exist. If it does exist, it just returns the existing JCas that corresponds to the CAS.

JCas implements the getView(...) method, enabling switching to other named views,
just like the corresponding method on the CAS. The JCas version, however, returns JCas
objects, instead of CAS objects, corresponding to the view.

6.6. Sample Multi-View Application

The UIMA SDK contains a simple Sofa example application which demonstrates many
Sofa specific concepts and methods. The source code for the application driver is in
exanpl es/ src/ or g/ apache/ ui ma/ exanpl es/ Sof aExanpl eAppl i cati on. j ava and the
Multi-View annotator is given in Sof aExanpl eAnnot at or . j ava in the same directory.

This sample application demonstrates a language translator annotator which expects an
input text Sofa with an English document and creates an output text Sofa containing a
German translation. Some of the key Sofa concepts illustrated here include:

* Sofa creation.

* Access of multiple CAS views.

* Unique feature structure index space for each view.

¢ Feature structures containing cross references between annotations in different CAS

views.

The strong affinity of annotations with a specific Sofa.

6.6.1. Annotator Descriptor

The annotator descriptor in exanpl es/ descri pt or s/ anal ysi s_engi ne/
Sof aExanpl eAnnot at or . xm declares an input Sofa named “EnglishDocument” and

an output Sofa named “GermanDocument”. A custom type “CrossAnnotation” is also
defined:

<t ypeDescri pti on>
<name>sof a. t est. Cr ossAnnot at i on</ nane>
<descri ption/ >
<supert ypeNanme>ui ma. t cas. Annot at i on</ supert ypeNane>
<f eat ur es>
<f eat ureDescri pti on>
<nanme>ot her Annot at i on</ nanme>

134

Multiple CAS Views UIMA Version 2.3.0

Application Setup

<descri ption/ >
<rangeTypeNanme>ui ma. t cas. Annot at i on</ r angeTypeNane>
</ f eat ureDescri pti on>
</ features>
</typeDescri ption>

The Cr ossAnnot at i on type is derived from ui ma. t cas. Annot ati on and includes one
new feature: a reference to another annotation.

6.6.2. Application Setup

The application driver instantiates an analysis engine, seAnnot at or, from the annotator
descriptor, obtains a new base CAS using that engine's CAS definition, and creates the
expected input Sofa using:

CAS cas = seAnnot at or. newCAS() ;
CAS aVi ew = cas. createVi em "Engli shDocunment ") ;

Since seAnnot at or is a primitive component, and no Sofa mapping has been defined, the
SofalD will be “EnglishDocument”. Local Sofa data is set using;:

aVi ew. set Docunment Text ("this beer is good");

At this point the CAS contains all necessary inputs for the translation annotator and its
process method is called.

6.6.3. Annotator Processing

Annotator processing consists of parsing the English document into individual words,
doing word-by-word translation and concatenating the translations into a German
translation. Analysis metadata on the English Sofa will be an annotation for each English
word. Analysis metadata on the German Sofa will be a Cr ossAnnot at i on for each
German word, where the ot her Annot at i on feature will be a reference to the associated
English annotation.

Code of interest includes two CAS views:

/1 get View of the English text Sofa
engl i shVi ew = aCas. get Vi ew("Engl i shDocunent ") ;

/1 Create the output Cerman text Sofa
germanVi ew = aCas. creat eVi ew(" Ger nanDocunent ") ;

the indexing of annotations with the appropriate view:

engl i shVi ew. addFsTol ndexes(engAnnot) ;

ger manVi ew. addFsTol ndexes(ger mAnnot) ;

UIMA Version 2.3.0 Multiple CAS Views 135

Accessing the results of analysis

and the combining of metadata belonging to different Sofas in the same feature structure:

/1 add link to English text
ger mMAnnot . set Feat ur eVal ue(ot her, engAnnot);

6.6.4. Accessing the results of analysis

The application needs to get the results of analysis, which may be in different views.
Analysis results for each Sofa are dumped independently by iterating over all annotations
for each associated CAS view. For the English Sofa:

//get annotation iterator for this CAS

FSI ndex anl ndex = aVi ew. get Annot ati onl ndex() ;

FSIterator anlter = anlndex.iterator();

while (anlter.isValid()) {
Annot ati onFS annot = (AnnotationFS) anlter.get();
Systemout.println(" " + annot.get Type().get Name()

+ ": " + annot. get CoveredText());

anlter. moveToNext () ;

}

Iterating over all German annotations looks the same, except for the following;:

if (annot.getType() == cross) {
Annot ati onFS crossAnnot =
(Annot ati onFS) annot . get Feat ur eVal ue(ot her);
System out. println(" ot her annotation feature:
+ crossAnnot . get CoveredText ());

Of particular interest here is the built-in Annotation type method get Cover edText ().
This method uses the “begin” and “end” features of the annotation to create a substring
from the CAS document. The SofaRef feature of the annotation is used to identify the
correct Sofa's data from which to create the substring.

The example program output is:

---Printing all annotations for English Sofa---
ui ma. t cas. Docunment Annot ati on: this beer is good
ui ma. tcas. Annotation: this

ui ma. t cas. Annot ati on: beer

ui ma. tcas. Annotation: is

ui ma. t cas. Annot ati on: good

---Printing all annotations for Gernman Sof a---
ui ma. t cas. Docunent Annot ati on: das bier ist gut
sof a.test. CrossAnnot ati on: das

ot her annotation feature: this
sof a.test. CrossAnnotati on: bier

ot her annotation feature: beer

136 Multiple CAS Views UIMA Version 2.3.0

Views API Summary

sof a.test. CrossAnnotation: i st
ot her annotation feature: is

sof a. test. CrossAnnot ati on: gut
ot her annotation feature: good

6.7. Views APl Summary

The recommended way to deliver a particular CAS view to a Single-View component is to
use by Sofa-mapping in the CPE and/or aggregate descriptors.

For Multi-View components or applications, the following methods are used to create or
get a reference to a CAS view for a particular Sofa:

Creating a new View:

JCas newVi ew
CAS newi ew

alJCas.createView(String | ocal NameCOf TheVi ewBef or eMappi ng) ;
aCAS .createView String | ocal NameOf TheVi ewBef or eMappi ng) ;

Getting a View from a CAS or JCas:

JCas nyView = aJCas. getView String | ocal NaneOrf TheVi ewBef or eMappi ng) ;

CAS nyView = aCAS .getViewString | ocal NameOf TheVi ewBef or eMappi ng) ;
Iterator allViews = aCasOrJCas.getViewterator();

Iterator someViews = aCasOrJCas.getViewterator(String | ocal Vi ewNanePrefi x);

The following methods are useful for all annotators and applications:

Setting Sofa data for a CAS or JCas:

aCasOr JCas. set Docunent Text (String docText);

aCasOrJCas. set Sof aDat aString(String docText, String m nmeType);

aCasOr JCas. set Sof aDat aArray(FeatureStructure array, String m neType);
aCasOrJCas. set Sof abDat aURI (String uri, String mneType);

Getting Sofa data for a particular CAS or JCas:

String doc = aCasOrJCas. get Docunent Text () ;

String doc = aCasOrJCas. get Sof aDat aStri ng();
FeatureStructure array = aCasOrJCas. get Sof aDat aArray() ;
String uri = aCasOrJCas. get Sof aDat aURI () ;

Input Streamis = aCasOr JCas. get Sof aDat aSt r ean() ;

6.8. Sofa Incompatibilities between UIMA version 1
and version 2

A major change in version 2 is related to the support of Single-View components and
applications. Given an analysis engine, ae, the API

UIMA Version 2.3.0 Multiple CAS Views 137

Sofa Incompatibilities: V1 and V2

CAS cas = ae.newCas();

used to return the base CAS. Now it returns a view of the Sofa named “_InitialView”. This
Sofa will actually only be created if any Sofa data is set for this view. The initial view is
used for Single-View applications and Multi-View annotators with no Sofa mapping.

The process method of Multi-View annotators receive the base CAS, however the base
CAS no longer has an index repository to hold “global” data. Global data needs to be put
in a specific named CAS view of your choice.

Because of these changes, the following scenarios will break with v2.0 clients:
* Any version 1.x services (you must migrate the services to version 2).
* Applications or components explicitly referencing “_DefaultTextSofaName” in code
or descriptors.
* Multi-View applications using the Base CAS index repository.

138

Multiple CAS Views UIMA Version 2.3.0

Chapter 7. CAS Multiplier Developer's Guide

The UIMA analysis components (Annotators and CAS Consumers) described previously
in this manual all take a single CAS as input, optionally make modifications to it, and
output that same CAS. This chapter describes an advanced feature that became available
in the UIMA SDK v2.0: a new type of analysis component called a CAS Multiplier, which
can create new CASes during processing.

CAS Multipliers are often used to split a large artifact into manageable pieces. This is a
common requirement of audio and video analysis applications, but can also occur in text
analysis on very large documents. A CAS Multiplier would take as input a single CAS
representing the large artifact (perhaps by a remote reference to the actual data — see
Section 5.2, “Formats of Sofa Data” [121]) and produce as output a series of new CASes
each of which contains only a small portion of the original artifact.

CAS Multipliers are not limited to dividing an artifact into smaller pieces, however. A
CAS Multiplier can also be used to combine smaller segments together to form larger
segments. In general, a CAS Multiplier is used to change the segmentation of a series of
CASes; that is, to change how a stream of data is divided among discrete CAS objects.

7.1. Developing the CAS Multiplier Code

7.1.1. CAS Multiplier Interface Overview

CAS Multiplier implementations should extend from the JCasMul ti pl i er _I npl Base or
CasMul tiplier_I npl Base classes, depending on which CAS interface they prefer to use.
As with other types of analysis components, the CAS Multiplier ImplBase classes define
optional i ni tial i ze, destroy, and r econfi gur e methods. There are then three required
methods: pr ocess, hasNext, and next . The framework interacts with these methods as
follows:

1. The framework calls the CAS Multiplier's pr ocess method, passing it an input
CAS. The process method returns, but may hold on to a reference to the input CAS.

2. The framework then calls the CAS Multiplier's hasNext method. The CAS
Multiplier should return t r ue from this method if it intends to output one or more
new CASes (for instance, segments of this CAS), and f al se if not.

3. If hasNext returned true, the framework will call the CAS Multiplier's next
method. The CAS Multiplier creates a new CAS (we will see how in a moment),
populates it, and returns it from the next method.

4. Steps 2 and 3 continue until hasNext returns false.

From the time when pr ocess is called until the hasNext method returns false, the CAS
Multiplier “owns” the CAS that was passed to its pr ocess method. The CAS Multiplier

CAS Multiplier 139

Getting an empty CAS Instance

can store a reference to this CAS in a local field and can read from it or write to it during
this time. Once hasNext returns false, the CAS Multiplier gives up ownership of the input
CAS and should no longer retain a reference to it.

7.1.2.

How to Get an Empty CAS Instance

The CAS Multiplier's next method must return a CAS instance that represents a new
representation of the input artifact. Since CAS instances are managed by the framework,
the CAS Multiplier cannot actually create a new CAS; instead it should request an empty
CAS by calling the method:

CAS get Enpt yCAS()
or

JCas get Enpt yJCas()

which are defined on the CasMul ti plier I npl Base and JCasMul ti plier | npl Base
classes, respectively.

Note that if it is more convenient you can request an empty CAS during the process or
hasNext methods, not just during the next method.

By default, a CAS Multiplier is only allowed to hold one output CAS instance at a time.
You must return the CAS from the next method before you can request a second CAS.

If you try to call getEmptyCAS a second time you will get an Exception. You can change
this default behavior by overriding the method get Casl nst ancesRequi r ed to return

the number of CAS instances that you need. Be aware that CAS instances consume a
significant amount of memory, so setting this to a large value will cause your application
to use a lot of RAM. So, for example, it is not a good practice to attempt to generate a
large number of new CASes in the CAS Multiplier's pr ocess method. Instead, you should
spread your processing out across the calls to the hasNext or next methods.

Note: You can only call get Enpt yCAS() or get Enpt yJCas() from your CAS
Multiplier's pr ocess, hasNext, or next methods. You cannot call it from other
methods such as i ni ti al i ze. This is because the Aggregate AE's Type System
is not available until all of the components of the aggregate have finished their
initialization.

The Type System of the empty CAS will contain all of the type definitions for all
components of the outermost Aggregate Analysis Engine or Collection Processing Engine
that contains your CAS Multiplier. Therefore downstream components that receive these
CASes can add new instances of any type that they define.

Warning: Be careful to keep the Feature Structures that belong to each CAS
separate. You cannot create references from a Feature Structure in one CAS to a
Feature Structure in another CAS. You also cannot add a Feature Structure created

140

CAS Multiplier UIMA Version 2.3.0

Example Code

in one CAS to the indexes of a different CAS. If you attempt to do this, the results
are undefined.

7.1.3. Example Code

This section walks through the source code of an example CAS Multiplier that

breaks text documents into smaller pieces. The Java class for the example is

or g. apache. ui ma. exanpl es. casMul ti pli er. Si npl eText Segnent er and the source
code is included in the UIMA SDK under the exanpl es/ sr ¢ directory.

7.1.3.1. Overall Structure

public class SinpleTextSegnenter extends JCasMultiplier_Inpl Base {
private String nDoc;
private int nPos;
private int nBegnentSize;
private String nmDoclUri ;

public void initialize(U nmaContext aContext)
throws ResourcelnitializationException

{ ...}

public void process(JCas aJCas) throws Anal ysi sEngi neProcessException

{ ...}

publ i ¢ bool ean hasNext () throws Anal ysi sEngi neProcessExcepti on

{ ...}

public AbstractCas next() throws Anal ysi sengi neProcessException

{ ... 1

The Si npl eText Segrrent er class extends JCasMul ti pli er _I npl Base and implements
the optional i ni ti al i ze method as well as the required pr ocess, hasNext, and next
methods. Each method is described below.

7.1.3.2. Initialize Method

public void initialize(U maContext aContext) throws
Resourcelnitializati onException {
super.initialize(aContext);
nmSegnent Si ze = ((I nteger)aCont ext. get Confi gPar anet er Val ue(
"segnent Si ze")).intVal ue();

Like an Annotator, a CAS Multiplier can override the initialize method and read
configuration parameter values from the UimaContext. The SimpleTextSegmenter defines
one parameter, “Segment Size”, which determines the approximate size (in characters) of
each segment that it will produce.

UIMA Version 2.3.0 CAS Multiplier 141

Example Code

7.1.3.3. Process Method

public void process(JCas aJCas)
t hrows Anal ysi sEngi neProcessExcepti on {
nDoc = aJCas. get Docunent Text () ;
nmPos = 0;
/1 retreive the filenane of the input file fromthe CAS so that it can
/1 be added to each segment
FSlterator it = aJCas.
get Annot at i onl ndex(Sour ceDocunent | nformati on. type).iterator();
if (it.hasNext()) {
Sour ceDocunent I nfornation filelLoc =
(Sour ceDocunent | nfornation)it.next();
mDocUri = fileLoc.getUri();

}

el se {
mDocUri = nul | ;

}
}

The process method receives a new JCas to be processed(segmented) by this CAS
Multiplier. The SimpleTextSegmenter extracts some information from this JCas and stores
it in fields (the document text is stored in the field mDoc and the source URI in the field
mDocURI). Recall that the CAS Multiplier is considered to “own” the JCas from the time
when process is called until the time when hasNext returns false. Therefore it is acceptable
to retain references to objects from the JCas in a CAS Multiplier, whereas this should
never be done in an Annotator. The CAS Multiplier could have chosen to store a reference
to the JCas itself, but that was not necessary for this example.

The CAS Multiplier also initializes the mPos variable to 0. This variable is a position into
the document text and will be incremented as each new segment is produced.

7.1.3.4. HasNext Method

publ i ¢ bool ean hasNext () throws Anal ysi SEngi neProcessException {
return mPos < nDoc. | ength();
}

The job of the hasNext method is to report whether there are any additional output CASes
to produce. For this example, the CAS Multiplier will break the entire input document
into segments, so we know there will always be a next segment until the very end of the
document has been reached.

7.1.3.5. Next Method

public AbstractCas next() throws Analysi séngi neProcessException {
int breakAt = nPos + nSegnent Si ze;
i f (breakAt > nDoc. | ength())

142 CAS Multiplier UIMA Version 2.3.0

Example Code

breakAt = nDoc. | ength();

/| search for the next new ine character.

/1 Note: this exanple segnenter inplenmentation

/1 assunes that the document contains many new i nes.

/1 In the worst case, if this segnenter

/1 is run on a document with no new ines,

/1 it will produce only one segnment containing the

/1 entire document text.

/1 A better inplementation mght specify a nmaxi num segnent size as
/1 well as a m ninum

whil e (breakAt < nDoc.length() &&
nDoc. char At (breakAt - 1) !='\n")
br eak At ++;

JCas jcas = getEnptyJCas();
try {
j cas. set Docunent Text (nDoc. subst ri ng(nPos, breakAt));
/1 if original CAS had SourceDocunent| nformation,
al so add Sour ceDocunent | nformati o
/1l to each segnent
if (mDocUri !'= null) {
Sour ceDocunent | nf ormati on sdi =
new Sour ceDocunent | nf ormati on(j cas);
sdi.setUri (mDocUri);
sdi . set O f set | nSour ce(nPos) ;
sdi . set Docunent Si ze(br eakAt - nPos);
sdi . addTol ndexes();

if (breakAt == nDoc.length()) {
sdi . set Last Segnent (true);

}
}

nmPos = breakAt;
return jcas;
} catch (Exception e) {
jcas.rel ease();
t hr ow new Anal ysi sengi nePr ocessExcepti on(e);

The next method actually produces the next segment and returns it. The framework
guarantees that it will not call next unless hasNext has returned true since the last call to
process or next .

Note that in order to produce a segment, the CAS Multiplier must get an empty JCas to
populate. This is done by the line:

JCas jcas = getEnptyJCas();

UIMA Version 2.3.0 CAS Multiplier 143

CAS Multiplier Descriptor

This requests an empty JCas from the framework, which maintains a pool of JCas
instances to draw from.

Also, note the use of the t ry. . . cat ch block to ensure that a JCas is released back to the
pool if an exception occurs. This is very important to allow a CAS Multiplier to recover
from errors.

7.2. Creating the CAS Multiplier Descriptor

There is not a separate type of descriptor for a CAS Multiplier. CAS Multiplier are
considered a type of Analysis Engine, and so their descriptors use the same syntax as any
other Analysis Engine Descriptor.

The descriptor for the Si npl eText Segnent er is located in the exanpl es/ descri ptors/
cas_mul tiplier/Sinpl eText Segnent er. xnl directory of the UIMA SDK.

The Analysis Engine Description, in its “Operational Properties” section, now contains a
new “outputsNewCASes” property which takes a Boolean value. If the Analysis Engine is
a CAS Multiplier, this property should be set to true.

If you use the CDE, be sure to check the “Outputs new CASes” box in the Runtime
Information section on the Overview page, as shown here:

|SimpleTextSegmenter, xml

Overview

= Implementation Details

Implementation Language () C/C++ (%) Java
Engine Type '5_,",' Primitive 'C} Aggregate

+ Runtime Information

This section describes information about how to run this component
[]updates the CAS

multiple deployment allowed

Outputs new CASes

Mame of the Java dass file org.apache.uima.examples. casMultiplier. SimpleTextSegmenter

Browse

If you edit the Analysis Engine Descriptor by hand, you need to add a
<out put sNewCASes> element to your descriptor as shown here:

<oper ati onal Properties>
<nodi f i esCas>f al se</ nodi fi esCas>
<mul ti pl eDepl oynment Al | owed>t rue</ mul ti pl eDepl oynment Al | owed>
<out put sNewCASes>t r ue</ out put sNewCASes>
</ oper ati onal Properties>

144 CAS Multiplier UIMA Version 2.3.0

Using CAS Multipliers in Aggregates

Note: The “modifiedCas” operational property refers to the input CAS, not
the new output CASes produced. So our example SimpleTextSegmenter has
modifiesCas set to false since it doesn't modify the input CAS.

7.3. Using a CAS Multiplier in an Aggregate
Analysis Engine

You can include a CAS Multiplier as a component in an Aggregate Analysis Engine. For
example, this allows you to construct an Aggregate Analysis Engine that takes each input
CAS, breaks it up into segments, and runs a series of Annotators on each segment.

7.3.1. Adding the CAS Multiplier to the Aggregate

Since CAS Multiplier are considered a type of Analysis Engine, adding them to an
aggregate works the same way as for other Analysis Engines. Using the CDE, you just
click the “Add...” button in the Component Engines view and browse to the Analysis
Engine Descriptor of your CAS Multiplier. If editing the aggregate descriptor directly, just
i mpor t the Analysis Engine Descriptor of your CAS Multiplier as usual.

An example descriptor for an Aggregate Analysis Engine containing a CAS Multiplier is
provided in exanpl es/ descri ptors/ cas_nul tiplier/Segnent er AndTokeni zer AE. xm .
This Aggregate runs the Si npl eText Segnent er example to break a large document into
segments, and then runs each segment through the Si npl eTokenAndSent enceAnnot at or .
Try running it in the Document Analyzer tool with a large text file as input, to

see that it outputs multiple output CASes, one for each segment produced by the

Si npl eText Segrent er.

7.3.2. CAS Multipliers and Flow Control

CAS Multipliers are only supported in the context of Fixed Flow or custom Flow Control.
If you use the built-in “Fixed Flow” for your Aggregate Analysis Engine, you can position
the CAS Multiplier anywhere in that flow. Processing then works as follows: When a CAS
is input to the Aggregate AE, that CAS is routed to the components in the order specified
by the Fixed Flow, until that CAS reaches a CAS Multiplier.

Upon reaching a CAS Multiplier, if that CAS Multiplier produces new output CASes,
then each output CAS from that CAS Multiplier will continue through the flow, starting
at the node immediately after the CAS Multiplier in the Fixed Flow. No further processing
will be done on the original input CAS after it has reached a CAS Multiplier — it will not
continue in the flow.

If the CAS Multiplier does not produce any output CASes for a given input CAS, then that
input CAS will continue in the flow. This behavior is appropriate, for example, for a CAS
Multiplier that may segment an input CAS into pieces but only does so if the input CAS is
larger than a certain size.

UIMA Version 2.3.0 CAS Multiplier 145

CAS Multipliers and Flow Control

It is possible to put more than one CAS Multiplier in your flow. In this case, when a new
CAS output from the first CAS Multiplier reaches the second CAS Multiplier and if the
second CAS Multiplier produces output CASes, then no further processing will occur on
the input CAS, and any new output CASes produced by the second CAS Multiplier will
continue the flow starting at the node after the second CAS Multiplier.

This default behavior can be customized. The Fi xedFl owCont r ol | er component
that implement's UIMA's default flow defines a configuration parameter
Acti onAfter CasMul ti plier that can take the following values:

e conti nue —the CAS continues on to the next element in the flow

* st op —the CAS will no longer continue in the flow, and will be returned from the
aggregate if possible.

¢ dr op — the CAS will no longer continue in the flow, and will be dropped (not
returned from the aggregate) if possible.

e dropl f NewCasPr oduced (the default) — if the CAS multiplier produced a new CAS
as a result of processing this CAS, then this CAS will be dropped. If not, then this
CAS will continue.

You can override this parameter in your Aggregate Analysis Engine the same way you
would override a parameter in a delegate Analysis Engine. But to do so you must first
explicitly identify that you are using the Fi xedFl owContr ol | er implementation by
importing its descriptor into your aggregate as follows:

<fl onControl | er key="Fi xedFl onControl | er">
<i mport name="org. apache. ui na. f| ow. Fi xedFl owControl |l er"/>
</fl owController>

The parameter could then be overriden as, for example:

<confi gurati onPar anet er s>
<confi gurati onPar anmet er >
<nanme>Act i onFor | nt er nedi at eSegnent s</ name>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ mandat or y>
<overrides>
<par amnet er >
Fi xedFl onControl | er/ Acti onAfterCasMul tiplier
</ par anet er >
</ overri des>
</ confi gur ati onPar anet er >
</ confi gurati onPar anet er s>

<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<nanme>Act i onFor | nt er nedi at eSegnent s</ nane>
<val ue>

146 CAS Multiplier UIMA Version 2.3.0

Aggregate CAS Multipliers

<string>drop</string>
</ val ue>
</ naneVal uePai r >
</ confi gurationParaneterSettings>

This overriding can also be done using the Component Descriptor Editor tool. An
example of an Analysis Engine that overrides this parameter can be found in exanpl es/
descriptors/cas_multiplier/Segnent_Annotate_Merge_AE. xm . For more
information about how to specify a flow controller as part of your Aggregate Analysis
Engine descriptor, see Section 4.3, “Adding Flow Controller to an Aggregate” [116].

If you would like to further customize the flow, you will need to implement a custom
FlowController as described in Chapter 4, Flow Controller Developer’s Guide [111]. For
example, you could implement a flow where a CAS that is input to a CAS Multiplier will
be processed further by some downstream components, but not others.

7.3.3. Aggregate CAS Multipliers

An important consideration when you put a CAS Multiplier inside an Aggregate Analysis
Engine is whether you want the Aggregate to also function as a CAS Multiplier — that

is, whether you want the new output CASes produced within the Aggregate to be

output from the Aggregate. This is controlled by the <out put sNewCASes> element in the
Operational Properties of your Aggregate Analysis Engine descriptor. The syntax is the
same as what was described in Section 7.2, “CAS Multiplier Descriptor” [144] .

If you set this property to t r ue, then any new output CASes produced by a CAS
Multiplier inside this Aggregate will be output from the Aggregate. Thus the Aggregate
will function as a CAS Multiplier and can be used in any of the ways in which a primitive
CAS Multiplier can be used.

If you set the <outputsNewCASes> property to f al se , then any new output CASes
produced by a CAS Multiplier inside the Aggregate will be dropped (i.e. the CASes will
be released back to the pool) once they have finished being processed. Such an Aggregate
Analysis Engine functions just like a “normal” non-CAS-Multiplier Analysis Engine; the
fact that CAS Multiplication is occurring inside it is hidden from users of that Analysis
Engine.

Note: 1f you want to output some new Output CASes and not others, you need

to implement a custom Flow Controller that makes this decision — see Section 4.5,
“Using Flow Controllers with CAS Multipliers” [118].

7.4. Using a CAS Multiplier in a Collection
Processing Engine

It is currently a limitation that CAS Multiplier cannot be deployed directly in a Collection
Processing Engine. The only way that you can use a CAS Multiplier in a CPE is to first

UIMA Version 2.3.0 CAS Multiplier 147

Applications: Calling CAS Multipliers

wrap it in an Aggregate Analysis Engine whose out put sNewCASes property is set to
f al se, which in effect hides the existence of the CAS Multiplier from the CPE.

Note that you can build an Aggregate Analysis Engine that consists of CAS Multipliers
and Annotators, followed by CAS Consumers. This can simulate what a CPE would do,
but without the deployment and error handling options that the CPE provides.

7.5. Calling a CAS Multiplier from an Application

7.5.1. Retrieving Output CASes from the CAS Multiplier

The Anal ysi sEngi ne interface has the following methods that allow you to interact with
CAS Multiplier:

® Caslterator processAndQut put NewCASes(CAS)
e JCaslterator processAndCut put NewCASes(JCas)

From your application, you call pr ocessAndQut put NewCASes and pass it the input CAS.
An iterator is returned that allows you to step through each of the new output CASes that
are produced by the Analysis Engine.

It is very important to realize that CASes are pooled objects and so your application
must release each CAS (by calling the CAS. r el ease() method) that it obtains from the
Caslterator before it calls the Casl t er at or . next method again. Otherwise, the CAS pool
will be exhausted and a deadlock will occur.

The example code in the class or g. apache. ui ma. exanpl es. casMul ti plier.
CasMul ti pli er Exanpl eAppl i cati on illusrates this. Here is the main processing loop:

Caslterator caslterator = ae.processAndCQut put NewCASes(i niti al Cas);
while (caslterator. hasNext()) {
CAS out Cas = caslterator.next();

//dunp the docunent text and annotations for this segnment
Systemout. print| n("********st NEW SEGVENT ****** k%%
System out . printl n(out Cas. get Docunent Text ());

Pri nt Annot ati ons. pri nt Annot ati ons(out Cas, System out);

/Il rel ease the CAS (inportant)
out Cas. rel ease();

Note that as defined by the CAS Multiplier contract in Section 7.1.1, “CAS Multiplier
Interface Overview” [139], the CAS Multiplier owns the input CAS (i ni ti al Cas

in the example) until the last new output CAS has been produced. This means

that the application should not try to make changes to i ni ti al Cas until after the
Casl terat or. hasNext method has returned false, indicating that the segmenter has
finished.

148

CAS Multiplier UIMA Version 2.3.0

CAS Multipliers with other AEs

Note that the processing time of the Analysis Engine is spread out over the calls to the
Caslterator's hasNext and next methods. That is, the next output CAS may not
actually be produced and annotated until the application asks for it. So the application
should not expect calls to the Casl t er at or to necessarily complete quickly.

Also, calls to the Casl t er at or may throw Exceptions indicating an error has occurred
during processing. If an Exception is thrown, all processing of the input CAS will stop,
and no more output CASes will be produced. There is currently no error recovery
mechanism that will allow processing to continue after an exception.

7.5.2. Using a CAS Multiplier with other Analysis Engines

In your application you can take the output CASes from a CAS Multiplier and pass
them to the pr ocess method of other Analysis Engines. However there are some special
considerations regarding the Type System of these CASes.

By default, the output CASes of a CAS Multiplier will have a Type System that contains
all of the types and features declared by any component in the outermost Aggregate
Analysis Engine or Collection Processing Engine that contains the CAS Multiplier. If in
your application you create a CAS Multiplier and another Analysis Engine, where these
are not enclosed in an aggregate, then the output CASes from the CAS Multiplier will not
support any types or features that are declared in the latter Analysis Engine but not in the
CAS Multiplier.

This can be remedied by forcing the CAS Multiplier and Analysis Engine to share a single
U maCont ext when they are created, as follows:

/lcreate a "root" U MA context for your whol e application

U maCont ext Adnmi n r oot Cont ext =
Ul MAFr amewor k. newUi maCont ext (Ul MAFr amewor k. get Logger (),
Ul MAFr anewor k. newDef aul t Resour ceManager (),
U MAFr amewor k. newConf i gur ati onManager ()) ;

XMLI nput Sour ce i nput = new XM.I nput Sour ce("MyCasMul tiplier.xm");
Anal ysi sengi neDescri pti on desc = U MAFramewor k. get XM_Par ser () .
par seAnal ysi séngi neDescri ption(i nput);

//create a U MA Context for the new AE we are about to create
//first argument is unique key anong all AEs used in the application
U maCont ext Admi n chi | dCont ext = root Cont ext. creat eChil d(

"nmyCasMul tiplier", Collections. EMPTY_MAP);

/linstantiate CAS Miultiplier AE, passing the U MA Context through the
//addi tional paraneters nap

Map additi onal Parans = new HashMap();
addi ti onal Par ans. put (Resour ce. PARAM Ul MA_CONTEXT, chi |l dCont ext);

UIMA Version 2.3.0 CAS Multiplier 149

Merging with CAS Multipliers

Anal ysi sengi ne casMul ti plier AE = U MAFr amewor k. pr oduceAnal ysi sEngi ne(
desc, addi ti onal Par ans) ;

//repeat for another AE

XMLI nput Sour ce i nput2 = new XM.I nput Sour ce(" MyAE. xml ") ;

Anal ysi sengi neDescri ption desc2 = U MAFramewor k. get XM_Par ser () .
par seAnal ysi séngi neDescri ption(i nput 2);

U maCont ext Admi n chi | dCont ext 2 = r oot Cont ext . creat eChi | d(
"myAE", Coll ections. EMPTY_MAP);

Map additional Parans2 = new HashMap();
addi ti onal Par ans2. put (Resour ce. PARAM Ul MA_CONTEXT, chi |l dCont ext 2);

Anal ysi sengi ne nyAE = Ul MAFr anewor k. pr oduceAnal ysi sEngi ne(
desc2, additional Parans2);

7.6. Using a CAS Multiplier to Merge CASes

A CAS Multiplier can also be used to combine smaller CASes together to form larger
CASes. In this section we describe how this works and walk through an example.

7.6.1. Overview of How to Merge CASes

1. When the framework first calls the CAS Multiplier's pr ocess method, the
CAS Multiplier requests an empty CAS (which we'll call the "merged CAS")
and copies relevant data from the input CAS into the merged CAS. The class
org. apache. ui ma. uti | . CasCopi er provides utilities for copying Feature
Structures between CASes.

2. When the framework then calls the CAS Multiplier's hasNext method, the CAS
Multiplier returns f al se to indicate that it has no output at this time.

3. When the framework calls pr ocess again with a new input CAS, the CAS
Multiplier copies data from that input CAS into the merged CAS, combining it with
the data that was previously copied.

4. Eventually, when the CAS Multiplier decides that it wants to output the merged
CAS, it returns t r ue from the hasNext method, and then when the framework
subsequently calls the next method, the CAS Multiplier returns the merged CAS.

Note: There is no explicit call to flush out any pending CASes from a CAS
Multiplier when collection processing completes. It is up to the application to
provide some mechanism to let a CAS Multiplier recognize the last CAS in a
collection so that it can ensure that its final output CASes are complete.

150

CAS Multiplier UIMA Version 2.3.0

Example CAS Merger

7.6.2. Example CAS Merger

An example CAS Multiplier that merges CASes can be found is

provided in the UIMA SDK. The Java class for this example is

or g. apache. ui ma. exanpl es. casMul ti pli er. Si npl eText Mer ger and the source code is
located under the exanpl es/ sr ¢ directory.

7.6.2.1. Process Method

Almost all of the code for this example is in the pr ocess method. The first part of the
pr ocess method shows how to copy Feature Structures from the input CAS to the
"merged CAS":

public void process(JCas aJCas) throws Anal ysi SEngi neProcessException {
/1 procure a new CAS if we don't have one already
if (mvergedCas == null) {
mver gedCas = get EnptyJCas();
}

/'l append docunent text

String docText = aJCas. get Docunment Text () ;
int prevDocLen = mDocBuf. | ength();
nmDocBuf . append(docText) ;

/'l copy specified annotation types

/| CasCopier takes two args: the CAS to copy from

/1 the CAS to copy into.

CasCopi er copi er = new CasCopi er (aJCas. get Cas(), nM\ergedCas. getCas());

/1 needed in case one annotation is in tw indexes (could
/1 happen if specified annotation types overl ap)
Set copi edl ndexedFs = new HashSet () ;
for (int i = 0; i < mAnnotationTypesToCopy.|ength; i++) {
Type type = mVer gedCas. get TypeSyst em()
. get Type(mAnnot ati onTypesToCopy[i]);
FSI ndex i ndex = aJCas. get Cas().get Annot ati onl ndex(type);
Iterator iter = index.iterator();
while (iter.hasNext()) {
FeatureStructure fs = (FeatureStructure) iter.next();
if (!copiedl ndexedFs. contains(fs)) ({
Annot ati on copyOFFs = (Annotation) copier.copyFs(fs);
/1 update begin and end
copyf Fs. set Begi n(copyOf Fs. get Begi n() + prevDoclLen);
copyf Fs. set End(copyOf Fs. get End() + prevDoclLen);
mver gedCas. addFsTol ndexes(copyOf Fs) ;
copi edl ndexedFs. add(fs);

UIMA Version 2.3.0 CAS Multiplier 151

Example CAS Merger

The CasCopi er class is used to copy Feature Structures of certain types (specified by a
configuration parameter) to the merged CAS. The CasCopi er does deep copies, meaning
that if the copied FeatureStructure references another FeatureStructure, the referenced
FeatureStructure will also be copied.

This example also merges the document text using a separate St ri ngBuf f er . Note that
we cannot append document text to the Sofa data of the merged CAS because Sofa data
cannot be modified once it is set.

The remainder of the pr ocess method determines whether it is time to output a new CAS.
For this example, we are attempting to merge all CASes that are segments of one original
artifact. This is done by checking the Sour ceDocurnrent | nf or mat i on Feature Structure in
the CAS to see if its | ast Segnent feature is set to t r ue. That feature (which is set by the
example Si npl eText Segnent er discussed previously) marks the CAS as being the last
segment of an artifact, so when the CAS Multiplier sees this segment it knows it is time to
produce an output CAS.

/1 get the SourceDocunent|nformation FS,
/1 which indicates the sourceUR of the docunent
/1 and whether the incoming CAS is the |ast segnent
FSlterator it = aJCas
. get Annot at i onl ndex(Sour ceDocunent | nformati on.type).iterator();

if (lit.hasNext()) {

t hrow new Runti neException("M ssing Sour ceDocunent | nf or mati on");
}
Sour ceDocunent | nfor mati on sourceDoclnfo =

(Sour ceDocunent | nformation) it.next();

i f (sourcebDocl nfo.getlLast Segnent ()) {

/1 time to produce an output CAS

/| set the docunent text

mver gedCas. set Docunent Text (nmDocBuf.toString());

/1 add source docunent info to destination CAS
Sour ceDocunent | nformati on dest SDI =

new Sour ceDocunent | nf or mat i on(mver gedCas) ;
dest SDI . set Uri (sourceDocl nfo. getUri ());
dest SDI . set Of f set | nSour ce(0) ;
dest SDI . set Last Segnent (true);
dest SDI . addTol ndexes();

nmDocBuf = new StringBuffer();
mReadyToCut put = true;

When it is time to produce an output CAS, the CAS Multiplier makes final updates to
the merged CAS (setting the document text and adding a Sour ceDocunent | nf or nat i on
FeatureStructure), and then sets the nReadyToCQut put field to true. This field is then used
in the hasNext and next methods.

152

CAS Multiplier UIMA Version 2.3.0

SimpleTextMerger in an Aggregate

7.6.2.2. HasNext and Next Methods

These methods are relatively simple:

publ i c bool ean hasNext () throws Anal ysi sEngi neProcessException {
return mReadyToCQut put ;

}

public AbstractCas next() throws Analysi séngi neProcessException {
if (!nmReadyToQut put) {
t hrow new Runti neExcepti on("No next CAS");
}
JCas casToReturn = m\ergedCas;
m\ver gedCas = nul | ;
mReadyToCQut put = fal se;
return casToRet urn;

When the merged CAS is ready to be output, hasNext will return true, and next will
return the merged CAS, taking care to set the m\er gedCas field to nul | so that the next
call to pr ocess will start with a fresh CAS.

7.6.3. Using the SimpleTextMerger in an Aggregate
Analysis Engine

An example descriptor for an Aggregate Analysis Engine that uses the

Si npl eText Mer ger is provided in exanpl es/ descri ptors/cas_nul ti plier/

Segnent _Annot at e_Mer ge_AE. xm . This Aggregate first runs the Si npl eText Segnent er
example to break a large document into segments. It then runs each segment through the
example tokenizer and name recognizer annotators. Finally it runs the Si npl eText Mer ger
to reassemble the segments back into one CAS. The Nane annotations are copied to the
final merged CAS but the Token annotations are not.

This example illustrates how you can break large artifacts into pieces for more efficient
processing and then reassemble a single output CAS containing only the results most
useful to the application. Intermediate results such as tokens, which may consume a lot of
space, need not be retained over the entire input artifact.

The intermediate segments are dropped and are never output from the Aggregate
Analysis Engine. This is done by configuring the Fixed Flow Controller as described in
Section 7.3.2, “CAS Multipliers and Flow Control” [145], above.

Try running this Analysis Engine in the Document Analyzer tool with a large text file as
input, to see that it outputs just one CAS per input file, and that the final CAS contains
only the Nane annotations.

UIMA Version 2.3.0 CAS Multiplier 153

Chapter 8. XMI and EMF Interoperability

8.1. Overview

In traditional object-oriented terms, a UIMA Type System is a class model and a UIMA
CAS is an object graph. There are established standards in this area — specifically, UML®
is an OMG™ standard for class models and XMI (XML Metadata Interchange) is an OMG
standard for the XML representation of object graphs.

Furthermore, the Eclipse Modeling Framework (EMF) is an open-source framework

for model-based application development, and it is based on UML and XMI. In EMF,
you define class models using a metamodel called Ecore, which is similar to UML. EMF
provides tools for converting a UML model to Ecore. EMF can then generate Java classes
from your model, and supports persistence of those classes in the XMI format.

The UIMA SDK provides tools for interoperability with XMI and EMF. These tools allow
conversions of UIMA Type Systems to and from Ecore models, as well as conversions of
UIMA CASes to and from XMI format. This provides a number of advantages, including;:

You can define a model using a UML Editor, such as Rational Rose or
EclipseUML, and then automatically convert it to a UIMA Type System.

You can take an existing UIMA application, convert its type system to
Ecore, and save the CASes it produces to XMI. This data is now in a form
where it can easily be ingested by an EMF-based application.

More generally, we are adopting the well-documented, open standard XMI as the
standard way to represent UIMA-compliant analysis results (replacing the UIMA-specific
XCAS format). This use of an open standard enables other applications to more easily
produce or consume these UIMA analysis results.

For more information on XMI, see Grose et al. Mastering XMI. Java Programming with XMI,
XML, and UML. John Wiley & Sons, Inc. 2002.

For more information on EMF, see Budinsky et al. Eclipse Modeling Framework 2.0.
Addison-Wesley. 2006.

For details of how the UIMA CAS is represented in XMI format, see Chapter 7, XMI CAS
Serialization Reference in UIMA References .

8.2. Converting an Ecore Model to or from a UIMA
Type System

The UIMA SDK provides the following two classes:

XMI & EMF 155

../references/references.pdf#ugr.ref.xmi
../references/references.pdf#ugr.ref.xmi

Using XMI CAS Serialization

Ecor e2Ui maTypeSyst em converts from an .ecore model developed using EMF to

a UIMA-compliant TypeSystem descriptor. This is a Java class that can be run as a
standalone program or invoked from another Java application. To run as a standalone
program, execute:

java org.apache.uima.ecore.Ecore2UimaTypeSystem <ecore file> <output file>

The input .ecore file will be converted to a UIMA TypeSystem descriptor and written to
the specified output file. You can then use the resulting TypeSystem descriptor in your
UIMA application.

U maTypeSyst enREcor e: converts from a UIMA TypeSystem descriptor to an .ecore
model. This is a Java class that can be run as a standalone program or invoked from
another Java application. To run as a standalone program, execute:

java org.apache.uima.ecore.UimaTypeSystem2Ecore <TypeSystem descriptor> <output
file>

The input UIMA TypeSystem descriptor will be converted to an Ecore model file and
written to the specified output file. You can then use the resulting Ecore model in EMF
applications. The converted type system will include any <i nport . .. >ed TypeSystems;
the fact that they were imported is currently not preserved.

To run either of these converters, your classpath will need to include the UIMA jar files
as well as the following jar files from the EMF distribution: common.jar, ecore jar, and
ecore.xmi.jar.

Also, note that the uima-core.jar file contains the Ecore model file uima.ecore, which
defines the built-in UIMA types. You may need to use this file from your EMF
applications.

8.3. Using XMI CAS Serialization

The UIMA SDK provides XMI support through the following two classes:

Xmi CasSeri al i zer: can be run from within a UIMA application to write out a CAS to the
standard XMI format. The XMI that is generated will be compliant with the Ecore model
generated by Ui maTypeSyst en2Ecor e. An EMF application could use this Ecore model to
ingest and process the XMI produced by the XmiCasSerializer.

Xmi CasDeseri al i zer: can be run from within a UIMA application to read in an XMI
document and populate a CAS. The XMI must conform to the Ecore model generated by
U maTypeSyst enREcor e.

Also, the uimaj-examples Eclipse project contains some example code that shows how to
use the serializer and deserializer:

or g. apache. ui ma. exanpl es. xm . Xmi Wit er CasConsumner: Thisis a
CAS Consumer that writes each CAS to an output file in XMI format. It

156

XMI & EMF UIMA Version 2.3.0

Character Encoding Issues with XML Serialization

is analogous to the XCasWriter CAS Consumer that has existed in prior
UIMA versions, except that it uses the XMI serialization format.

or g. apache. ui ma. exanpl es. xm . Xnmi Col | ecti onReader: Thisis a
Collection Reader that reads a directory of XMI files and deserializes
each of them into a CAS. For example, this would allow you to build a
Collection Processing Engine that reads XMI files, which could contain
some previous analysis results, and then do further analysis.

Finally, in under the folder ui maj - exanpl es/ ecor e_sr c is the class

or g. apache. ui ma. exanpl es. xmi . Xm Ecor eCasConsuner, which writes each CAS

to XMI format and also saves the Type System as an Ecore file. Since this uses the

U maTypeSyst en2Ecor e converter, to compile it you must add to your classpath the EMF
jars common.jar, ecore.jar, and ecore.xmi.jar — see ecore_src/readme.txt for instructions.

8.3.1. Character Encoding Issues with XML Serialization

Note that not all valid Unicode characters are valid XML characters, at least not in XML
1.0. Moreover, it is possible to create characters in Java that are not even valid Unicode
characters, let alone XML characters. As UIMA character data is translated directly into
XML character data on serialization, this may lead to issues. UIMA will therefore check
that the character data that is being serialized is valid for the version of XML being used. If
non-serializable character data is encountered during serialization, an exception is thrown
and serialization fails (to avoid creating invalid XML data). UIMA does not simply replace
the offending characters with some valid replacement character; the assumption being
that most applications would not like to have their data modified automatically.

If you know you are going to use XML serialization, and you would like to avoid such
issues on serialization, you should check any character data you create in UIMA ahead

of time. Issues most often arise with the document text, as documents may originate at
various sources, and may be of varying quality. So it's a particularly good idea to check the
document text for characters that will cause issues for serialization.

UIMA provides a handful of functions to assist you in

checking Java character data. Those methods are located in

org. apache. uima.internal.util.XMUils.checkFor NonXnl Characters(), with
several overloads. Please check the javadocs for further information.

Please note that these issues are not specific to XMI serialization, they apply to the older
XCAS format in the same way.

UIMA Version 2.3.0 XMI & EMF 157

	UIMA Tutorial and Developers' Guides
	Table of Contents
	Chapter 1. Annotator and Analysis Engine Developer's Guide
	1.1. Getting Started
	1.1.1. Defining Types
	1.1.2. Generating Java Source Files for CAS Types
	1.1.3. Developing Your Annotator Code
	1.1.4. Creating the XML Descriptor
	1.1.5. Testing Your Annotator

	1.2. Configuration and Logging
	1.2.1. Configuration Parameters
	1.2.1.1. Declaring Parameters in the Descriptor
	1.2.1.2. Accessing Parameter Values from the Annotator Code
	1.2.1.3. Supporting Reconfiguration
	1.2.1.4. Configuration Parameter Groups

	1.2.2. Logging
	1.2.2.1. Specifying the Logging Configuration
	1.2.2.2. Setting Logging Levels
	1.2.2.3. Format of logging output
	1.2.2.4. Meaning of the logging severity levels
	1.2.2.5. Using the logger outside of an annotator
	1.2.2.6. Changing the underlying UIMA logging implementation

	1.3. Building Aggregate Analysis Engines
	1.3.1. Combining Annotators
	1.3.2. AAEs can also contain CAS Consumers
	1.3.3. Reading the Results of Previous Annotators

	1.4. Other examples
	1.5. Additional Topics
	1.5.1. Contract: Annotator Methods Called by the Framework
	1.5.2. Reporting errors from Annotators
	1.5.3. Throwing Exceptions from Annotators
	1.5.4. Accessing External Resource Files
	1.5.4.1. Declaring Resource Dependencies
	1.5.4.2. Accessing the Resource from the UimaContext
	1.5.4.3. Declaring Resources and Bindings
	1.5.4.4. Sharing Resources among Annotators
	1.5.4.5. Threading and Shared Resources

	1.5.5. Result Specifications
	1.5.5.1. Default ResultSpecification
	1.5.5.2. Passing Result Specifications to Annotators
	1.5.5.3. Aggregates
	1.5.5.4. Collection Proessing Engines

	1.5.6. Class path setup when using JCas
	1.5.7. Using the Shell Scripts

	1.6. Common Pitfalls
	1.7. Viewing UIMA objects in the Eclipse debugger
	1.8. Introduction to Analysis Engine Descriptor XML Syntax
	1.8.1. Header and Annotator Class Identification
	1.8.2. Simple Metadata Attributes
	1.8.3. Type System Definition
	1.8.4. Capabilities
	1.8.5. Configuration Parameters (Optional)
	1.8.5.1. Configuration Parameter Declarations
	1.8.5.2. Configuration Parameter Settings
	1.8.5.3. Aggregate Analysis Engine Descriptor

	Chapter 2. Collection Processing Engine Developer's Guide
	2.1. CPE Concepts
	2.2. CPE Configurator and CAS viewer
	2.2.1. Using the CPE Configurator
	2.2.2. Running the CPE Configurator from Eclipse

	2.3. Running a CPE from Your Own Java Application
	2.3.1. Using Listeners

	2.4. Developing Collection Processing Components
	2.4.1. Developing Collection Readers
	2.4.1.1. Java Class for the Collection Reader
	2.4.1.2. Required Methods in the Collection Reader class
	initialize()
	hasNext()
	getNext(CAS)
	getProgress()
	close()
	Optional Methods
	reconfigure()
	typeSystemInit()

	Threading considerations
	XML Descriptor for a Collection Reader

	2.4.2. Developing CAS Initializers
	2.4.3. Developing CAS Consumers
	2.4.3.1. Required Methods for a CAS Consumer
	initialize()
	processCas()
	Optional Methods
	batchProcessComplete()
	collectionProcessComplete()

	2.5. Deploying a CPE
	2.5.1. Deploying Managed CAS Processors
	2.5.2. Deploying Non-managed CAS Processors
	2.5.3. Deploying Integrated CAS Processors

	2.6. Collection Processing Examples

	Chapter 3. Application Developer's Guide
	3.1. The UIMAFramework Class
	3.2. Using Analysis Engines
	3.2.1. Instantiating an Analysis Engine
	3.2.2. Analyzing Text Documents
	3.2.3. Analyzing Non-Text Artifacts
	3.2.4. Accessing Analysis Results
	3.2.4.1. Accessing Analysis Results using the JCas
	3.2.4.2. Accessing Analysis Results using the CAS

	3.2.5. Multi-threaded Applications
	3.2.6. Using Multiple Analysis Engines and Creating Shared CASes
	3.2.7. Saving CASes to file systems

	3.3. Using Collection Processing Engines
	3.3.1. Running a Collection Processing Engine from a Descriptor
	3.3.2. Configuring a Collection Processing Engine Descriptor Programmatically

	3.4. Setting Configuration Parameters
	3.5. Integrating Text Analysis and Search
	3.5.1. Building an Index
	3.5.1.1. Configuring the Semantic Search CAS Indexer
	3.5.1.2. Building and Running a CPE including the Semantic Search CAS Indexer

	3.5.2. Semantic Search Query Tool

	3.6. Working with Remote Services
	3.6.1. Deploying a UIMA Component as a SOAP Service
	3.6.2. Deploying a UIMA Component as a Vinci Service
	3.6.3. How to Call a UIMA Service
	3.6.3.1. SOAP Service Client Descriptor
	3.6.3.2. Vinci Service Client Descriptor

	3.6.4. Restrictions on remotely deployed services
	3.6.5. The Vinci Naming Services (VNS)
	3.6.5.1. Starting VNS
	3.6.5.2. VNS Files
	3.6.5.3. Launching Vinci Services

	3.6.6. Configuring Timeout Settings
	3.6.6.1. Setting the Client Timeout
	3.6.6.2. Setting the Server Socket Timeout

	3.7. Increasing performance using parallelism
	3.8. Monitoring AE Performance using JMX
	3.9. Performance Tuning Options

	Chapter 4. Flow Controller Developer's Guide
	4.1. Developing the Flow Controller Code
	4.1.1. Flow Controller Interface Overview
	4.1.2. Example Code
	4.1.2.1. The WhiteboardFlowController Class
	4.1.2.2. The WhiteboardFlow Class

	4.2. Creating the Flow Controller Descriptor
	4.3. Adding a Flow Controller to an Aggregate Analysis Engine
	4.4. Adding a Flow Controller to a Collection Processing Engine
	4.5. Using Flow Controllers with CAS Multipliers
	4.6. Continuing the Flow When Exceptions Occur

	Chapter 5. Annotations, Artifacts, and Sofas
	5.1. Terminology
	5.1.1. Artifact
	5.1.2. Subject of Analysis — Sofa

	5.2. Formats of Sofa Data
	5.3. Setting and Accessing Sofa Data
	5.3.1. Setting Sofa Data
	5.3.2. Accessing Sofa Data
	5.3.3. Accessing Sofa Data using a Java Stream

	5.4. The Sofa Feature Structure
	5.5. Annotations
	5.5.1. Built-in Annotation types
	5.5.2. Annotations have an associated Sofa

	5.6. AnnotationBase

	Chapter 6. Multiple CAS Views of an Artifact
	6.1. CAS Views and Sofas
	6.1.1. Naming CAS Views and Sofas
	6.1.2. Multi-View, Single-View components & applications

	6.2. Multi-View Components
	6.2.1. How UIMA decides if a component is Multi-View
	6.2.2. Multi-View: additional capabilities
	6.2.3. Component XML metadata

	6.3. Sofa Capabilities and APIs for Applications
	6.4. Sofa Name Mapping
	6.4.1. Name Mapping in an Aggregate Descriptor
	6.4.2. Name Mapping in a CPE Descriptor
	6.4.3. Specifying the CAS View for a Single-View Component
	6.4.4. Name Mapping in a UIMA Application
	6.4.5. Name Mapping for Remote Services

	6.5. JCas extensions for Multiple Views
	6.6. Sample Multi-View Application
	6.6.1. Annotator Descriptor
	6.6.2. Application Setup
	6.6.3. Annotator Processing
	6.6.4. Accessing the results of analysis

	6.7. Views API Summary
	6.8. Sofa Incompatibilities between UIMA version 1 and version 2

	Chapter 7. CAS Multiplier Developer's Guide
	7.1. Developing the CAS Multiplier Code
	7.1.1. CAS Multiplier Interface Overview
	7.1.2. How to Get an Empty CAS Instance
	7.1.3. Example Code
	7.1.3.1. Overall Structure
	7.1.3.2. Initialize Method
	7.1.3.3. Process Method
	7.1.3.4. HasNext Method
	7.1.3.5. Next Method

	7.2. Creating the CAS Multiplier Descriptor
	7.3. Using a CAS Multiplier in an Aggregate Analysis Engine
	7.3.1. Adding the CAS Multiplier to the Aggregate
	7.3.2. CAS Multipliers and Flow Control
	7.3.3. Aggregate CAS Multipliers

	7.4. Using a CAS Multiplier in a Collection Processing Engine
	7.5. Calling a CAS Multiplier from an Application
	7.5.1. Retrieving Output CASes from the CAS Multiplier
	7.5.2. Using a CAS Multiplier with other Analysis Engines

	7.6. Using a CAS Multiplier to Merge CASes
	7.6.1. Overview of How to Merge CASes
	7.6.2. Example CAS Merger
	7.6.2.1. Process Method
	7.6.2.2. HasNext and Next Methods

	7.6.3. Using the SimpleTextMerger in an Aggregate Analysis Engine

	Chapter 8. XMI and EMF Interoperability
	8.1. Overview
	8.2. Converting an Ecore Model to or from a UIMA Type System
	8.3. Using XMI CAS Serialization
	8.3.1. Character Encoding Issues with XML Serialization

