Apache UIMA uimaFIT™

Apache UIMA™ Development Community

Version 3.5.0



The document is a manual for users of uimaFIT, a friendly API to the Apache
UIMA framework.

Copyright © 2023 The Apache Software Foundation

License and Disclaimer

The ASF licenses this documentation to you under the Apache License, Version 2.0 (the "License");
you may not use this documentation except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents are
distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Trademarks

All terms mentioned in the text that are known to be trademarks or service marks have been
appropriately capitalized. Use of such terms in this book should not be regarded as affecting the
validity of the the trademark or service mark.


http://www.apache.org/licenses/LICENSE-2.0

uimaFIT User's Guide

. Introduction
1.1. Simplify Component Implementation
1.2. Simplify Component Instantiation
1.2.1. From a class
1.2.2. From an XML descriptor
1.3. Is this cheating?
1.4. Conclusion
. Getting Started
2.1. Adding uimaFIT to your project
2.1.1. Maven users
2.1.2. Non-Maven users
2.2. A simple analysis engine implementation
2.3. Running the analysis engine
2.4. Generate a descriptor file
3. Pipelines
. Testing UIMA components
4.1. Examples
4.2. Tips & Tricks
. Validating CASes
5.1. Example use case
5.2. Defining a validation check
5.3. Registering the check for auto-detection
5.4. Validating a CAS
. Running Experiments
. CAS Utilities
7.1. Access methods

. Configuration Parameters

9. External Resources

9.1. Resource injection
9.1.1. Regular UIMA components

9.1.2. uimaFIT-aware components

9.1.3. Resources extending Resource_ImplBase
9.1.4. Resources implementing SharedResourceObject

9.1.5. Note on injecting resources into resources

9.2. Resource locators
10. Type System Detection
10.1. Making types auto-detectable

10.1.1. Using the Java Service Provide Interface

© 00 N N N N9 N0 o gy ok e e

DN DN DN DN DN DN DN DN DN NN R R R R R Rl =)l ) s
O 00 0O O O U1 U1 W N DN DN O 339 39 o U G = b b= DD DM DM O



10.1.2. Legacy approach
10.2. Making index definitions and type priorities auto-detectable
10.3. Using type auto-detection
10.4. Multiple META-INF/org.apache.uima.fit/types.txt files
10.5. Performance note and caching
10.6. Potential problems
10.6.1. m2eclipse fails to copy descriptors to target/classes
10.6.2. Class version conflicts
10.6.3. Classes and resources in the default package
11. Building an executable JAR
12. uimaFIT Maven Plugin
12.1. enhance goal
12.2. generate goal
13. Migration Guide
13.1. Version 3.0.x to 3.1.x
13.2. Version 2.x to 3.x
13.3. Version 2.3.0 to 2.4.0
13.4. Version 2.2.0 to 2.3.0
13.5. Version 2.1.0 to 2.2.0
13.6. Version 2.0.0 to 2.1.0
13.7. Version 1.4.0 to 2.0.0

30
30
31
31
32
32
32
32
32
34
36
36
38
40
40
40
41
42
42
42
42



Chapter 1. Introduction

While uimaFIT provides many features for a UIMA developer, there are two overarching themes
that most features fall under. These two sides of uimaFIT are,while complementary, largely
independent of each other. One of the beauties of uimaFIT is that a developer that uses one side of
uimaFIT extensively is not required to use the other side at all.

1.1. Simplify Component Implementation

The first broad theme of uimaFIT provides features that simplify component implementation. Our
favorite example of this is the @ConfigurationParameter annotation which allows you to annotate a
member variable as a configuration parameter. This annotation in combination with the method
ConfigurationParameterInitializer.initialize() completely automates the process of initializing
member variables with values from the UimaContext passed into your analysis engine’s initialize
method. Similarly, the annotation @ExternalResource annotation in combination with the method
ExternalResourceInitializer.initialize() completely automates the binding of an external
resource as defined in the UimaContext to a member variable. Dispensing with manually writing the
code that performs these two tasks reduces effort, eliminates verbose and potentially buggy boiler-
plate code, and makes implementing a UIMA component more enjoyable. Consider, for example, a
member variable that is of type Locale. With uimaFIT you can simply annotate the member
variable with @ConfigurationParameter and have your initialize method automatically initialize the
variable correctly with a string value in the UimaContext such as en_US.

1.2. Simplify Component Instantiation

The second broad theme of uimaFIT provides features that simplify component instantiation.
Working with UIMA, have you ever said to yourself “but I just want to tag some text!?” What does it
take to “just tag some text?” Here’s a list of things you must do with the traditional approach:

» wrap your tagger as a UIMA analysis engine

* write a descriptor file for your analysis engine

» write a CAS consumer that produces the desired output

» write another descriptor file for the CAS consumer

» write a descriptor file for a collection reader

» write a descriptor file that describes a pipeline

* invoke the Collection Processing Manager with your pipeline descriptor file

1.2.1. From a class

Each of these steps has its own pitfalls and can be rather time consuming. This is a rather
unsatisfying answer to our simple desire to just tag some text. With uimaFIT you can literally
eliminate all of these steps.

Here’s a simple snippet of Java code that illustrates “tagging some text” with uimaFIT:



import static org.apache.uima.fit.factory.JCasFactory.createlCas;

import static org.apache.uima.fit.pipeline.SimplePipeline.runPipeline;
import static
org.apache.uima.fit.factory.AnalysisEngineFactory.createEngineDescription;

JCas jCas = createlCas();
jCas.setDocumentText("some text");

runPipeline(jCas,
createEngineDescription(MyTokenizer.class),
createEngineDescription(MyTagger.class));

for (Token token : iterate(jCas, Token.class)){
System.out.println(token.getTag());

This code uses several static method imports for brevity. And while the terseness of this code won’t
make a Python programmer blush - it is certainly much easier than the seven steps outlined above!

1.2.2. From an XML descriptor

uimaFIT provides mechanisms to instantiate and run UIMA components programmatically with or
without descriptor files. For example, if you have a descriptor file for your analysis engine defined
by MyTagger (as shown above), then you can instead instantiate the analysis engine with:

AnalysisEngineDescription tagger = createEngineDescription(
"mypackage.MyTagger");

This will find the descriptor file mypackage/MyTagger.xml by name. Similarly, you can find a
descriptor file by location with createEngineDescriptionFromPath(). However, if you want to
dispense with XML descriptor files altogether (and you probably do), you can use the method
createEngineDescription() as shown above. One of the driving motivations for creating the second
side of uimaFIT is our frustration with descriptor files and our desire to eliminate them. Descriptor
files are difficult to maintain because they are generally tightly coupled with java code, they decay
without warning, they are wearisome to test, and they proliferate, among other reasons.

1.3. Is this cheating?

One question that is often raised by new uimaFIT users is whether or not it breaks the UIMA way.
That is, does adopting uimaFIT lead me down a path of creating UIMA components and systems
that are incompatible with the traditional UIMA approach? The answer to this question is no. For
starters, uimaFIT does not skirt the UIMA mechanism of describing components - it only skips the
XML part of it. For example, when the method createEngineDescription() is called (as shown above)
an AnalysisEngineDescription is created for the analysis engine. This is the same object type that is
instantiated when a descriptor file is used. So, instead of parsing XML to instantiate an analysis
engine description from XML, uimaFIT uses a factory method to instantiate it from method



parameters. One of the happy benefits of this approach 1is that for a given
AnalysisEnginedDescription you can  generate an XML  descriptor file using
AnalysisEngineDescription.toXML(). So, uimaFIT actually provides a very simple and direct path for
generating XML descriptor files rather than manually creating and maintaining them!

It is also useful to clarify that if you only want to use one side or the other of uimaFIT, then you are
free to do so. This is possible precisely because uimaFIT does not workaround UIMA’s mechanisms
for describing components but rather uses them directly. For example, if the only thing you want to
use in uimaFIT is the @ConfigurationParameter, then you can do so without worrying about what
effect this will have on your descriptor files. This is because your analysis engine will be initialized
with exactly the same UimaContext regardless of whether you instantiate your analysis engine in the
UIMA way or use one of uimaFIT’s factory methods. Similarly, a UIMA component does not need to
be annotated with @ConfiguratioParameter for you to make use of the createEngineDescription()
method. This is because when you pass configuration parameter values in to the
createEngineDescription() method, they are added to an AnalysisEngineDescription which is used
by UIMA to populate a UimaContext - just as it would if you used a descriptor file.

1.4. Conclusion

Because uimaFIT can be used to simplify component implementation and instantiation it is easy to
assume that you can’t do one without the other. This page has demonstrated that while these two
sides of uimaFIT complement each other, they are not coupled together and each can be effectively
used without the other. Similarly, by understanding how uimaFIT uses the UIMA component
description mechanisms directly, one can be assured that uimaFIT enables UIMA development that
is compatible and consistent with the UIMA standard and APIs.



Chapter 2. Getting Started

This quick start tutorial demonstrates how to use uimaFIT to define and set a configuration
parameter in an analysis engine, run it, and generate a descriptor file for it. The complete code for
this example can be found in the uimaFIT-examples module.

2.1. Adding uimaFIT to your project

The following instructions describe how to add uimaFIT to your project’s classpath.

2.1.1. Maven users

If you use Maven, then uimaFIT can be added to your project by simply adding uimaFIT as a project
dependency by adding the following snippet of XML to your pom.xml file:

<dependency>
<groupId>org.apache.uima</groupId>
<artifactId>uimafit-core</artifactId>
<version>3.5.0</version>
</dependency>

uimaFIT distributions are hosted by Maven Central and so no repository needs to be added to your
pom.xml file.

2.1.2. Non-Maven users

If you do not build with Maven, then download uimaFIT from the Apache UIMA downloads page.
The file name should be uimafit—bin.zip. Download and unpack this file. The contents of the
resulting upacked directory will contain a directory called lib. Add all of the files in this directory to
your classpath.

2.2. A simple analysis engine implementation

Here is the complete analysis engine implementation for this example.

public class GetStartedQuickAE
extends org.apache.uima.fit.component.JCasAnnotator_ImplBase {

public static final String PARAM_STRING = "stringParam";
@ConfigurationParameter(name = PARAM_STRING)
private String stringParam;

@0verride

public void process(JCas jCas) throws AnalysisEngineProcessException {
System.out.println("Hello world! Say 'hi' to " + stringParam);

}


http://uima.apache.org/downloads.cgi

The first thing to note is that the member variable stringParam is annotated with
@ConfigurationParameter which tells uimaFIT that this is an analysis engine configuration
parameter. It is best practice to create a public constant for the parameter name, here PARAM_STRING
The second thing to note is that we extend uimaFIT’s version of the JCasAnnotator_ImplBase. The
initialize method of this super class calls:

ConfigurationParameterInitializer.initializeConfigurationParameters(
Object, UimaContext)

which populates the configuration parameters with the appropriate contents of the UimaContext. If
you do not want to extend uimaFIT’s JCasAnnotator_ImplBase, then you can call this method directly
in the initialize method of your analysis engine or any class that implements Initializable. You
can call this method for an instance of any class that has configuration parameters.

2.3. Running the analysis engine

The following lines of code demonstrate how to instantiate and run the analysis engine from a
main method:

JCas jCas = JCasFactory.createJCas();

AnalysisEngine analysisEngine = AnalysisEngineFactory.createEngine(
GetStartedQuickAE.class,
GetStartedQuickAE.PARAM_STRING, "uimaFIT");

analysisEngine.process(jCas);

In a more involved example, we would probably instantiate a collection reader and run this
analysis engine over a collection of documents. Here, it suffices to simply create a JCas. Line 3
instantiates the analysis engine using AnalysisEngineFactory and sets the string parameter named
stringParam to the value uimaFIT. Running this simple program sends the following output to the
console:

Hello world! Say 'hi' to uimaFIT

Normally you would be using a type system with your analysis components. When using uimaFIT, it
is easiest to keep your type system descriptors in your source folders and make them known to
uimaFIT. To do so, create a file META-INF/org.apache.uima.fit/types.txt in a source folder and add
references to all your type descriptors to the file, one per line. You can also use wildcards. For
example:

classpath*:org/apache/uima/fit/examples/type/Token.xml



classpath*:org/apache/uima/fit/examples/type/Sentence.xml
classpath*:org/apache/uima/fit/examples/tutorial/type/*.xml

2.4. Generate a descriptor file

The following lines of code demonstrate how a descriptor file can be generated using the class
definition:

AnalysisEngine analysisEngine = AnalysisEngineFactory.createEngine(
GetStartedQuickAE.class,
GetStartedQuickAE.PARAM_STRING, "uimaFIT");

analysisEngineDescription.toXML(
new FileQutputStream("GetStartedQuickAE.xml"));

If you open the resulting descriptor file you will see that the configuration parameter stringParam is
defined with the value set to uimaFIT. We could now instantiate an analysis engine using this
descriptor file with a line of code like this:

AnalysisEngineFactory.createEngine("GetStartedQuickAE");

But, of course, we really wouldn’t want to do that now that we can instantiate analysis engines
using the class definition as was done above!

This chapter, of course, did not demonstrate every feature of uimaFIT which provides support for
annotating external resources, creating aggregate engines, running pipelines, testing components,
among others.



Chapter 3. Pipelines

UIMA is a component-based architecture that allows composing various processing components
into a complex processing pipeline. A pipeline typically involves a collection reader which ingests
documents and analysis engines that do the actual processing.

Normally, you would run a pipeline using a UIMA Collection Processing Engine or using UIMA AS.
uimaFIT offers a third alternative that is much simpler to use and well suited for embedding UIMA
pipelines into applications or for writing tests.

As uimaFIT does not supply any readers or processing components, we just assume that we have
written three components:

» TextReader - reads text files from a directory
» Tokenizer - annotates tokens

* TokenFrequencyliriter - writes a list of tokens and their frequency to a file

We create descriptors for all components and run them as a pipeline:

CollectionReaderDescription reader =
CollectionReaderFactory.createReaderDescription(
TextReader.class,
TextReader .PARAM_INPUT, "/home/uimafit/documents");

AnalysisEngineDescription tokenizer =
AnalysisEngineFactory.createEngineDescription(
Tokenizer.class);

AnalysisEngineDescription tokenFrequencyWriter =
AnalysisEngineFactory.createEngineDescription(
TokenFrequencyWriter.class,
TokenFrequencyWriter.PARAM_OUTPUT, "counts.txt");

SimplePipeline.runPipeline(reader, tokenizer, writer);

Instead of running the full pipeline end-to-end, we can also process one document at a time and
inspect the analysis results:

CollectionReaderDescription reader =
CollectionReaderFactory.createReaderDescription(
TextReader.class,
TextReader.PARAM_INPUT, "/home/uimafit/documents");

AnalysisEngineDescription tokenizer =

AnalysisEngineFactory.createEngineDescription(
Tokenizer.class);

10



for (JCas jcas : SimplePipeline.iteratePipeline(reader, tokenizer)) {
System.out.printf("Found %d tokens%n",
JCasUtil.select(jcas, Token.class).size());

11



Chapter 4. Testing UIMA components

Writing tests without uimaFIT can be a laborious process that results in fragile tests that are very
verbose and break easily when code is refactored. This page demonstrates how you can write tests
that are both concise and robust. Here is an outline of how you might create a test for a UIMA
component without uimaFIT:

» write a descriptor file that configures your component appropriately for the test. This requires a
minimum of 30-50 lines of XML.

* begin a test with 5-10 lines of code that instantiate the e.g. analysis engine.
* run the analysis engine against some text and test the contents of the CAS.

» repeat steps 1-3 for your next test usually by copying the descriptor file, renaming it, and
changing e.g. configuration parameters.

If you have gone through the pain of creating tests like these and then decided you should refactor
your code, then you know how tedious it is to maintain them.

Instead of pasting variants of the setup code (see step 2) into other tests we began to create a library
of utility methods that we could call which helped shorten our code. We extended these methods so
that we could instantiate our components directly without a descriptor file. These utility methods
became the initial core of uimaFIT.

4.1. Examples
There are several examples that can be found in the uimafit-examples module.

* There are a number of examples of unit tests in both the test suite for the uimafit-core module
and the uimafit-examples module. In particular, there are some well-documented unit tests in
the latter which can be found in RoomNumberAnnotator1Test.

* You can improve your testing strategy by introducing a TestBase class such as the one found in
ExamplesTestBase. This class is intended as a super class for your other test classes and sets up a
JCas that is always ready to use along with a TypeSystemDescription and a TypePriorities. An
example test that subclasses from ExamplesTestBase is RoomNumberAnnotator2Test.

* Most analysis engines that you want to test will generally be downstream of many other
components that add annotations to the CAS. These annotations will likely need to be in the CAS
so that a downstream analysis engine will do something sensible. This poses a problem for tests
because it may be undesirable to set up and run an entire pipeline every time you want to test a
downstream analysis engine. Furthermore, such tests can become fragile in the face of behavior
changes to upstream components. For this reason, it can be advantageous to serialize a CAS as
an XMI file and use this as a starting point rather than running an entire pipeline. An example
of this approach can be found in XmiTest.

4.2. Tips & Tricks

The package <package>org.apache.uima.fit.testing</package> provides some utility classes that can

12



be handy when writing tests for UIMA components. You may find the following suggestions useful:

* add a TokenBuilder to your TestBase class. An example of this can be found in ComponentTestBase.
This makes it easy to add tokens and sentences to the CAS you are testing which is a common
task for many tests.

» use a J(asBuilder to add text and annotations incrementally to a JCas instead of first setting the
text and then adding all annotations.

e use a CasDumplWiriter to write the CAS contents is a human readable format to a file or to the
console. Compare this with a previously written and manually verified file to see if changes in
the component result in changes of the components output.

13



Chapter 5. Validating CASes

The uimaFIT CAS validation feature allows you to define consistency rules for your type system and
to automatically check that CASes comply with these rules.

5.1. Example use case

Imagine a system which uses machine learning to automatically identify persons in a text. Such a
system might define an annotation type called Person having a feature called confidence of type
float. However, a requirement of the system should be that the confidence score must be within
range from 0 to 1. Any value outside that range would probably be a bug in the systems
implementation. Now imagine that you want to implement not only one, but a bunch of different
UIMA analysis engines, each based on a different machine learning approach and plug these into
the system. Instead of repeating the test code that checks the range of the confidence feature with
each implementation, it would be much nicer if the range check could be included with the type
system that all these implementations share. The unit tests should be able to pick this check (any
any other consistency checks) up automatically and use them.

5.2. Defining a validation check

To define a validation check, all you need to do is to create a class implementing the
org.apache.uima.fit.validation.CasValidationCheck interface. This interfaces defines a single
method List<CasValidationResult> check(CAS cas). Or if you prefer working against the JCas AP]I,
you can implement the org.apache.uima.fit.validation.JCasValidationCheck interface.
Implementations of both interfaces (CasValidationCheck and JCasValidationCheck) can be applied to
CAS as well as JCas instances - so it does not matter against which interface you build your check.

public class ConfidenceRangeCheck implements JCasValidationCheck {
@0verride
public List<ValidationResult> validate(JCas alCas) throws ValidationException {
List<ValidationResult> results = new ArraylList<>();
for (Person person : JCasUtil.select(alCas, Person.class)) {
if (person.getConfidence() < 0.0d || person.getConfidence() > 1.0d) {
results.add(ValidationResult.error(this, "Invalid confidence score (%f) on %s
at [%d,%d]",
person.getConfidence(), person.getType().getName(),
person.getBegin(), person.getEnd()));
}
}
return results;
}
}

Checks are instantiated by the system as singletons. This means that their
NOTE implementations must be stateless and must have a zero-argument constructor (or
no constructor at all).

14



5.3. Registering the check for auto-detection

uimaFIT uses the Java Service Locator mechanism to locate validation check implementations. So to
make a check available for auto-detection, its fully-qualified class name must be added to a file
META-INF/services/org.apache.uima.fit.validation.ValidationCheck. Multiple checks can be added
by putting each class name on separate lines.

5.4. Validating a CAS

The org.apache.uima.fit.validation.Validator class can be used to validate your (J)CASes. This class
is typically constructed using a builder:

CAS cas = ...

// By default, the builder auto-detects all registered checks
Validator validator = new Validator.Builder().build();

// You could also pass in a JCas here instead of a CAS
ValidationSummary summary = validator.check(cas);

The output of a check is a ValidationSummary which contains a bunch of ValidationResult items. A
ValidationResult essentially is a message with a severity level. When a summary contains any
result with an error-level severity, the validation should be considered as failed.

The Validator.Builder can be configured, e.g. to exclude certain checks or to entirely disable the
auto-detection of checks and instead work with only a set of explicitly specified checks.

15



Chapter 6. Running Experiments

The uimafit-examples module contains a package org.apache.uima.fit.examples.experiment.pos
which demonstrates a very simple experimental setup for testing a part-of-speech tagger. You may
find this example more accessible if you check out the code from subversion and build it in your
own environment.

The documentation for this example can be found in the code itself. Please refer to RunExperiment as
a starting point. The following is copied from the javadoc comments of that file:

RunExperiment demonstrates a very common (though simplified)
experimental setup in which gold standard data is available for some task
and you want to evaluate how well your analysis engine works against that
data. Here we are evaluating BaselineTagger which is a (ridiculously) simple

part-of-speech tagger against the part-of-speech tags found in
src/main/resources/org/apache/uima/fit/examples/pos/sample-gold.txt

The basic strategy is as follows:

* post the data as is into the default view,

* parse the gold-standard tokens and part-of-speech tags and put the results into another view we
will call GOLD_VIEW,

* create another view called SYSTEM_VIEW and copy the text and Token annotations from the
GOLD VIEW into this view,

* run the BaselineTagger on the SYSTEM_VIEW over the copied Token annoations,
 evaluate the part-of-speech tags found in the SYSTEM_VIEW with those in the GOLD_VIEW.

16



Chapter 7. CAS Utilities

uimaFIT facilitates working with the CAS and JCas by offering various convenient methods for
accessing and navigating annotations and feature structures. Additionally, the the convenience
methods for JCas access are fully type-safe and return the JCas type or a collection of the JCas type
which you wanted to access.

7.1. Access methods

uimaFIT supports the following convenience methods for accessing CAS and JCas structures. All
methods respect the UIMA index definitions and return annotations or feature structures in the
order defined by the indexes. Unless the default UIMA index for annotations has been overwritten,
annotations are returned sorted by begin (increasing) and end (decreasing).

» select(cas, type) - fetch all annotations of the given type from the CAS/JCas. Variants of this
method also exist to fetch annotations from a FSList or FSArray.

» selectAll(cas) - fetch all annotations from the CAS or fetch all feature structures from the JCas.

» selectBetween(type, annotation1, annotation2)* - fetch all annotations between the given two
annotations.

* selectCovered(type, annotation)* - fetch all annotations covered by the given annotation. If this
operation is used intensively, indexCovered(:--) should be used to pre-calculate annotation
covering information.

» selectCovering(type, annotation)* - fetch all annotations covering the given annotation. If this
operation is used intensively, indexCovering(:--) should be used to pre-calculate annotation
covering information.

» selectByIndex(cas, type, n) -fetch the n-th feature structure of the given type.

» selectSingle(cas, type) - fetch the single feature structure of the given type. An exception is
thrown if there is not exactly one feature structure of the type.

* selectSingleRelative(type, annotation, n)* - fetch a single annotation relative to the given
annotation. A positive n fetches the n-th annotation right of the specified annotation, while the a
negative n fetches to the left.

» selectPreceding(type, annotation, n)* - fetch the n annotations preceding the given annotation.
If there are less then n preceding annotations, all preceding annotations are returned.

» selectFollowing(type, annotation, n)* - fetch the n annotations following the given annotation.
If there are less then n following annotations, all following annotations are returned.

For historical reasons, the method marked with * also exist in a version that accepts
a CAS/JCas as the first argument. These may not work as expected when the
annoation arguments provided to the method are from a different CAS/JCas/view.
Also, for any method accepting two annotations, these should come from the same
CAS/JCas/view. In future, the potentially problematic signatures may be deprecated,
removed, or throw exeptions if these conditions are not met.

NOTE
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You should expect the structures returned by these methods to be backed by the
CAS/]JCas contents. In particular, if you remove any feature structures from the CAS

NOTE while iterating over these structures may cause failures. For this reason, you should
also not hold on to these structures longer than necessary, as is the case for UIMA
FSIterators as well.

Depending on whether one works with a CAS or JCas, the respective methods are available from the
JCasUtil or CasUtil classes.

JCasUtil expect a JCas wrapper class for the type argument, e.g. select(jcas, Token.class) and
return this type or a collection using this generic type. Any subtypes of the specified type are
returned as well. CasUtil expects a UIMA Type instance. For conveniently getting these, CasUtil offers

the methods getType(CAS, (Class<?>) or getType(CAS, String) which fetch a type either by its JCas
wrapper class or by its name.

Unless annotations are specifically required, e.g. because begin/end offsets are required, the
JCasUtil methods can be used to access any feature structure inheriting from TOP, not only
annotations. The CasUtil methods generally work only on annotations. Alternative methods ending
in "FS" are provided for accessing arbitrary feature structures, e.g. selectFS.

Examples:

// CAS version
Type tokenType = CasUtil.getType(cas, "my.Token");
for (AnnotationFS token : CasUtil.select(cas, tokenType)) {

// 1Cas version
for (Token token : JCasUtil.select(jcas, Token.class)) {

18



Chapter 8. Configuration Parameters

uimaFIT defines the @ConfigurationParameter annotation which can be used to annotate the fields of
an analysis engine or collection reader. The purpose of this annotation is twofold:

* injection of parameters from the UIMA context into fields
* declaration of parameter metadata (mandatory, default value, description) which can be used to

generate XML descriptors

In a regular UIMA component, parameters need to be manually extracted from the UIMA context,
typically requiring a type cast.

class MyAnalysisEngine extends CasAnnotator_ImplBase {
public static final String PARAM_SOURCE_DIRECTORY = "sourceDirectory";
private File sourceDirectory;

public void initialize(UimaContext context)
throws ResourcelnitializationException {

sourceDirectory = new File((String) context.getConfigParameterValue(
PARAM_SOURCE_DIRECTORY));

The component has no way to declare a default value or to declare if a parameter is optional or
mandatory. In addition, any documentation needs to be maintained in !JavaDoc and in the XML
descriptor for the component.

With uimaFIT, all this information can be declared in the component using the
@ConfigurationParameter annotation.

Table 1. @ConfigurationParameter annotation

Parameter Description Default
name parameter name name of annotated field
description description of the parameter
mandatory whether a non-null value must true
be specified
defaultValue the default value if no value is
specified

class MyAnalysisEngine
extends org.apache.uima.fit.component.CasAnnotator_ImplBase {

/**
* Directory to read the data from.

19



*/

public static final String PARAM_SOURCE_DIRECTORY = "sourceDirectory";
@ConfigurationParameter(name=PARAM_SOURCE_DIRECTORY, defaultValue=".")
private File sourceDirectory;

}

Note, that it is no longer necessary to implement the initialize() method. uimaFIT takes care of
locating the parameter sourceDirectory in the UIMA context. It recognizes that the File class has a
String constructor and uses that to instantiate a new File object from the parameter. A parameter
is mandatory unless specified otherwise. If a mandatory parameter is not specified in the context,
an exception is thrown.

The defaultValue is used when generating an UIMA component description from the class. It should
be pointed out in particular, that uimaFIT does not make use of the default value when injecting
parameters into fields. For this reason, it is possible to have a parameter that is mandatory but does
have a default value. The default value is used as a parameter value when a component description
is generated via the uimaFIT factories unless a parameter is specified in the factory call. If a
component description in created manually without specifying a value for a mandatory parameter,
uimaFIT will generate an exception.

You can use the enhance goal of the uimaFIT Maven plugin to pick up the parameter
description from the JavaDoc and post it to the description field of the
@ConfigurationParameter annotation. This should be preferred to specifying the
description explicitly as part of the annotation.

NOTE

The parameter injection mechanism is implemented in the ConfigurationParameterInitializer class.
uimaFIT provides several base classes that already come with an initialize() method using the
initializer:

* CasAnnotator_ImplBase

» CasCollectionReader_ImplBase

* CasConsumer_ImplBase

» CasFlowController_ImplBase

o CasMultiplier_ImplBase

* JCasAnnotator_ImplBase

» JCasCollectionReader_ImplBase

» JCasConsumer_ImplBase

* JCasFlowController_ImplBase

* JCasMultiplier_ImplBase

* Resource_ImplBase

The ConfigurationParameterInitializer can also be used with shared resources:

class MySharedResourceObject implements SharedResourceObject {
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public static final String PARAM_VALUE = "Value";
@ConfigurationParameter(name = PARAM_VALUE, mandatory = true)
private String value;

public void load(DataResource aData)
throws ResourcelnitializationException {

ConfigurationParameterInitializer.initialize(this, aData);
}
}

Fields that can be annotated with the @ConfigurationParameter annotation are any array or
collection types (including if they are only typed via interfaces such as List or Set) of primitive
types (int, boolean, float, double). Enum types, as well as, fields of the types Charset, File, Locale,
Pattern, URI, and URL can also be used. These can be initialized either using an object value (e.g.
StandardChartsets.UTF_8") or a string value (e.g. "UTF-8"). Additionally it is possible to inject any
fields of types that define a constructor accepting a single String. These must be initialized from a
string value.

Multi-valued parameters can be initialized from single values without having to wrap these into a
container.
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Chapter 9. External Resources

An analysis engine often uses some data model. This may be as simple as word frequency counts or
as complex as the model of a parser. Often these models can become quite large. If an analysis
engine is deployed multiple times in the same pipeline or runs on multiple CPU cores, memory can
be saved by using a shared instance of the data model. UIMA supports such a scenario by so-called
external resources. The following sections illustrates how external resources can be used with
uimakFIT.

First create a class for the shared data model. Usually this class would load its data from some URI
and then expose it via its methods. An example would be to load word frequency counts and to
provide a getFrequency() method. In our simple example we do not load anything from the
provided URI - we just offer a method to get the URI from which data be loaded.

// Simple model that only stores the URI it was loaded from. Normally data

// would be loaded from the URI instead and made accessible through methods

// in this class. This simple example only allows accessing the URI.

public static final class SharedModel implements SharedResourceObject {
private String uri;

public void load(DataResource aData)
throws ResourcelnitializationException {

uri = aData.getUri().toString();
}

public String getUri() { return uri; }
}

9.1. Resource injection

9.1.1. Regular UIMA components

When an external resource is used in a regular UIMA component, it is usually fetched from the
context, cast and copied to a class member variable.

class MyAnalysisEngine extends CasAnnotator_ImplBase {
final static String MODEL_KEY = "Model";
private SharedModel model;

public void initialize(UimaContext context)
throws ResourcelnitializationException {

configuredResource = (SharedModel)
getContext().getResourceObject(MODEL_KEY);
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uimaFIT can be used to inject external resources into such traditional components using the
createDependencyAndBind() method. To show that this works with any off-the-shelf UIMA
component, the following example uses uimaFIT to configure the OpenNLP Tokenizer:

// Create descriptor

AnalysisEngineDescription tokenizer = createEngineDescription(
Tokenizer.class,
UimaUtil.TOKEN_TYPE_PARAMETER, Token.class.getName(),
UimaUtil.SENTENCE_TYPE_PARAMETER, Sentence.class.getName());

// Create the external resource dependency for the model and bind it

createDependencyAndBind(tokenizer, UimaUtil.MODEL_PARAMETER,
TokenizerModelResourceImpl.class,
"http://opennlp.sourceforge.net/models-1.5/en-token.bin");

We recommend declaring parameter constants in the classes that use them, e.g.
here in Tokenizer. This way, the parameters for a class can be found easily.
However, OpenNLP declares parameters centrally in UimaUtil. Thus, the example
above is correct, although unconventional.

NOTE

Note that uimaFIT is unable to perform type-coercion on parameters if a descriptor
is created from a class that does not contain @ConfigurationParameter annotations,
such as the OpenNLP Tokenizer. Such a descriptor does not contain any parameter
declarations! However, it is still possible to configure such a component using

NOTE uimaFIT by passing exactly the expected types as parameter values. Thus, we need
use the getName() method to get the class name as a string, instead of simply passing
the class itself. Also, setting multi-valued parameter from a list or single value does
not work here. Multi-values parameters must be passed as an array of the required
type. Only the default UIMA types are possible: String, boolean, int, and float.

9.1.2. uimaFIT-aware components

uimaFIT provides the @ExternalResource annotation to inject external resources directly into class
member variables.

Table 2. @ExternalResource annotation

Parameter Description Default
key Resource key field name
api Used when the external field type

resource type is different from
the field type, e.g. when using
an ExternalResourceLocator
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Parameter Description Default

mandatory Whether a value must be true
specified

// Example annotator that uses the SharedModel. In the process() we only
// test if the model was properly initialized by uimaFIT
public static class Annotator

extends org.apache.uima.fit.component.JCasAnnotator_ImplBase {

final static String MODEL_KEY = "Model";
@ExternalResource(key = MODEL_KEY)
private SharedModel model;

public void process(JCas alCas) throws AnalysisEngineProcessException {
assertTrue(model.getUri().endsWith("gene_model_v0@2.bin"));
// Prints the instance ID to the console - this proves the same
// instance of the SharedModel is used in both Annotator instances.
System.out.println(model);

}
}

Note, that it is no longer necessary to implement the initialize() method. uimaFIT takes care of
locating the external resource Model in the UIMA context and assigns it to the field model. If a
mandatory resource is not present in the context, an exception is thrown.

The resource injection mechanism is implemented in the ExternalResourcelnitializer class.
uimaFIT provides several base classes that already come with an initialize() method using the
initializer:

* CasAnnotator_ImplBase

e CasCollectionReader_Imp1Base

* CasConsumer_ImplBase

* CasFlowController_ImplBase

e CasMultiplier_ImplBase

» JCasAnnotator_ImplBase

* JCasCollectionReader_ImplBase

* JCasConsumer_ImplBase

e JCasFlowController_ImplBase

e JCasMultiplier_ImplBase

* Resource_ImplBase
When building a pipeline, external resources can be set of a component just like configuration

parameters. External resources and configuration parameters can be mixed and appear in any
order when creating a component description.
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Note that in the following example, we create only one external resource description and use it to
configure two different analysis engines. Because we only use a single description, also only a
single instance of the external resource is created and shared between the two engines.

ExternalResourceDescription extDesc = createSharedResourceDescription(
SharedModel.class, new File("somemodel.bin"));

// Binding external resource to each Annotator individually
AnalysisEngineDescription aed1 = createEngineDescription(
Annotator.class,
Annotator.MODEL KEY, extDesc);

AnalysisEngineDescription aed2 = createEngineDescription(
Annotator.class,
Annotator.MODEL_KEY, extDesc);

// Check the external resource was injected
AnalysisEngineDescription aaed = createEngineDescription(aed1, aed2);
AnalysisEngine ae = createEngine(aaed);

ae.process(ae.newJCas());

This example is given as a full JUnit-based example in the the uimaFIT-examples project.

9.1.3. Resources extending Resource_ImplBase

One kind of resources extend Resource_ImplBase. These are the easiest to handle, because uimaFIT’s
version of Resource_ImplBase already implements the necessary logic. Just be sure to call
super.initialize() when overriding initialize(). Also mind that external resources are not
available yet when initialize() is called. For any initialization logic that requires resources,
override and implement afterResourcesInitialized(). Other than that, injection of external
resources works as usual.

public static class ChainableResource extends Resource_ImplBase {
public final static String PARAM_CHAINED_RESOURCE = "chainedResource";
@ExternalResource(key = PARAM_CHAINED_RESOURCE)
private ChainableResource chainedResource;

public void afterResourcesInitialized() {
// init logic that requires external resources

}
}

9.1.4. Resources implementing SharedResourceObject

The other kind of resources implement SharedResourceObject'. Since this is an interface, uimaFIT
cannot provide the initialization logic, so you have to implement a couple of things in the resource:

* implement ExternalResourceAware
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* declare a configuration parameter ExternalResourceFactory.PARAM_RESOURCE_NAME and return its
value in getResourceName()

* invoke ConfigurationParameterInitializer.initialize() in the load() method.

Again, mind that external resource not properly initialized until uimaFIT invokes
afterResourcesInitialized().

public class TestSharedResourceObject implements
SharedResourceObject, ExternalResourceAware {

@ConfigurationParameter(name=ExternalResourceFactory.PARAM_RESOURCE _NAME)
private String resourceName;

public final static String PARAM_CHAINED_RESOURCE = "chainedResource";
@ExternalResource(key = PARAM_CHAINED_RESOURCE)
private ChainableResource chainedResource;

public String getResourceName() {
return resourceName;

}

public void load(DataResource aData)
throws ResourcelnitializationException {

ConfigurationParameterInitializer.initialize(this, aData);
// rest of the init logic that does not require external resources

}

public void afterResourcesInitialized() {
// init logic that requires external resources

}
}

9.1.5. Note on injecting resources into resources

Nested resources are only initialized if they are used in a pipeline which contains at least one
component that calls ConfigurationParameterInitializer.initialize(). Any component extending
uimaFIT’s component base classes qualifies. If you use nested resources in a pipeline without any
uimaFIT-aware components, you can just add uimaFIT’s NoopAnnotator to the pipeline.

9.2. Resource locators

Normally, in UIMA an external resource needs to implement either SharedResourceObject or
Resource. In order to inject arbitrary objects, uimaFIT has the concept of ExternalResourcelocator.
When a resource implements this interface, not the resource itself is injected, but the method
getResource() is called on the resource and the result is injected. The following example illustrates
how to inject an object from JNDI into a UIMA component:
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class MyAnalysisEngine2 extends JCasAnnotator_ImplBase {
static final String RES_DICTIONARY = "dictionary";
@ExternalResource(key = RES_DICTIONARY)
Dictionary dictionary;

}

AnalysisEngineDescription desc = createEngineDescription(
MyAnalysisEngine2.class);

bindResource(desc, MyAnalysisEngine2.RES_DICTIONARY,
JndiResourcelocator.class,
IndiResourcelocator.PARAM_NAME, "dictionaries/german");
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Chapter 10. Type System Detection

UIMA requires that types that are used in the CAS are defined in XML files - so-called type system
descriptions (TSD). Whenever a UIMA component is created, it must be associated with such a type
system. While it is possible to manually load the type system descriptors and pass them to each
UIMA component and to each created CAS, it is quite inconvenient to do so. For this reason,
uimaFIT supports the automatic detection of such files in the classpath. Thus is becomes possible
for a UIMA component provider to have component’s type automatically detected and thus the
components becomes immediately usable by adding it to the classpath.

10.1. Making types auto-detectable

10.1.1. Using the Java Service Provide Interface

The Java Service Provide Interface (SPI) mechanism is a standard approach in Java for building
extensible software. In our case, we want to make uimaFIT aware of type system descriptions,
index definitions or type priority lists so that when we create a new CAS or analysis component,
they are automatically pre-configured with these.

To enable this auto-detection, the UIMA Core Java SDK provides defines interfaces:

* org.apache.uima.spi.FsIndexCollectionProvider
* org.apache.uima.spi.TypePrioritiesProvider
* org.apache.uima.spi.TypeSystemDescriptionProvider
Java code that wants to announce types, indexes or type priorities must implement one or more of

these interfaces in a provider class. We will make an example for type system descriptions. It works
in the same way for indexes and type priorities.

The following provider class publishes types from a type system description XML file located it can

access via the classpath at /org/apache/uima/examples/types/TypeSystem.xml:

import static java.util.Arrays.aslist;
import static
org.apache.uima.fit.factory.TypeSystemDescriptionFactory.createTypeSystemDescription;

import java.util.List;

import org.apache.uima.resource.metadata.TypeSystemDescription;
import org.apache.uima.spi.TypeSystemDescriptionProvider;

public class MyTypeSystemProvider implements TypeSystemDescriptionProvider {
@0verride
public List<TypeSystemDescription> listTypeSystemDescriptions() {

return
asList(createTypeSystemDescription("org.apache.uima.examples.types.TypeSystem"));
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You may also consider a slightly more advanced implementation that pre-resolves any imports that
may be contained in the loaded descriptors. This is important if you are in an environment with
multiple classloaders such as an OSGI environment.

import static java.util.Arrays.aslList;

import static

org.apache.uima.fit.factory.TypeSystemDescriptionFactory.createTypeSystemDescription;

import java.util.Collections;
import java.util.List;

import org.apache.
import org.apache.
import org.apache.
import org.apache.
import org.apache.
import org.apache.

uima.
uima.
uima.
uima.
uima.
uima.

UIMAFramework;

resource.ResourceManager;
resource.impl.ResourceManager_impl;
resource.metadata.TypeSystemDescription;
spi.TypeSystemDescriptionProvider;
util.InvalidXMLException;

public class MyAdvancedTypeSystemProvider implements TypeSystemDescriptionProvider {

@Override

public List<TypeSystemDescription> listTypeSystemDescriptions() {
ResourceManager resMgr = new ResourceManager_impl(getClass().getClassLoader());

try {

TypeSystemDescription tsd = createTypeSystemDescription(
"org.apache.uima.examples.types.TypeSystem");
tsd.resolveImports(reshgr);
return aslist(tsd);
} catch (InvalidXMLException e) {
UIMAFramework.getLogger().error("Unable to load type system", e);
return Collections.emptylList();

} finally {

resMgr.destroy();

}
}
}

In a proper implementation, you might care to use a better error handling, use your own loggers
instead of the framework logger, maybe load additional type system descriptions, etc.

Once the provider class has been implemented, it needs to be registered with the SPI mechanism.
To do that, create a text file with the name of the implemented interface in META-INF/services, e.g.
META-INF/services/org.apache.uima.spi.TypeSystemDescriptionProvider. Into that file, add the name
of the provider class implementation, e.g. foo.bar.MyTypeSystemProvider. If you have multiple
provider classes for the given interface, add them all, one class per line.
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10.1.2. Legacy approach

The provider of a type system should create a file META-INF/org.apache.uima.fit/types.txt in the
classpath. This file should define the locations of the type system descriptions. Assume that a type
org.apache.uima.fit.type.Token is specified in the TSD org/apache/uima/fit/type/Token.xml, then the
file should have the following contents:

classpath*:org/apache/uima/fit/type/Token.xml

Mind that the file types.txt is must be located in META-INF/org.apache.uima.fit
NOTE where org.apache.uima.fit is the name of a sub-directory inside META-INF. We are
not using the Java package notation here!

To specify multiple TSDs, add additional lines to the file. If you have a large number of TSDs, you
may prefer to add a pattern. Assume that we have a large number of TSDs under
org/apache/uima/fit/type, we can use the following pattern which recursively scans the package
org.apache.uima.fit.type and all sub-packages for XML files and tries to load them as TSDs.

classpath*:org/apache/uima/fit/type/**/*.xml

Try to design your packages structure in a way that TSDs and JCas wrapper classes generated from
them are separate from the rest of your code.

If it is not possible or inconvenient to add the types.txt file, patterns can also be specified using the
system property org.apache.uima.fit.type.import_pattern. Multiple patterns may be specified
separated by semicolon:

-Dorg.apache.uima.fit.type.import_pattern=\
classpath*:org/apache/uima/fit/type/**/*.xml

The \ in the example is used as a line-continuation indicator. It and all spaces

NOTE
following it should be ommitted.

10.2. Making index definitions and type priorities
auto-detectable

Auto-detection also works for index definitions and type priority definitions. For index definitions,
the respective file where to register the index definition XML files is META-
INF/org.apache.uima.fit/fsindexes.txt and for type priorities, it is META-
INF/org.apache.uima.fit/typepriorities.txt.
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10.3. Using type auto-detection

The auto-detected type system can be obtained from the TypeSystemDescriptionFactory:

TypeSystemDescription tsd =
TypeSystemDescriptionFactory.createTypeSystemDescription()

Popular factory methods also support auto-detection:

AnalysisEngine ae = createEngine(MyEngine.class);

10.4. Multiple META-INF/org.apache.uima.fit/types.txt
files

uimaFIT supports multiple types.txt files in the classpath (e.g. in differnt JARs). The types.txt files
are located via Spring using the classpath search pattern:

TYPE_MANIFEST_PATTERN = "classpath*:META-INF/org.apache.uima.fit/types.txt"

This resolves to a list URLs pointing to ALL types.txt files. The resolved URLs are unique and will
point either to a specific point in the file system or into a specific JAR. These URLs can be handled
by the standard Java URL loading mechanism. Example:

jar:/path/to/syntax-types.jar!/META-INF/org.apache.uima.fit/types.txt
jar:/path/to/token-types.jar!/META-INF/org.apache.uima.fit/types.txt

uimaFIT then reads all patters from all of these URLs and uses these to search the classpath again.
The patterns now resolve to a list of URLs pointing to the individual type system XML descriptors.
All of these URLs are collected in a set to avoid duplicate loading (for performance optimization -
not strictly necessary because the UIMA type system merger can handle compatible duplicates).
Then the descriptors are loaded into memory and merged using the standard UIMA type system
merger (CasCreationUtils.mergeTypeSystems()). Example:

jar:/path/to/syntax-types.jar!/desc/types/Syntax.xml
jar:/path/to/token-types.jar!/org/foobar/typesystems/Tokens.xml

Voil4, the result is a type system covering all types could be found in the classpath.
It is recommended

1. to put type system descriptors into packages resembling a namespace you "own" and to use a
package-scoped wildcard search
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classpath*:org/apache/uima/fit/type/**/*.xml"

2. or when putting descriptors into a "well-known" package like desc.type, that types.txt file should
explicitly list all type system descriptors instead of using a wildcard search

classpath*:desc/type/Token.xml
classpath*:desc/type/Syntax.xml

Method 1 should be preferred. Both methods can be mixed.

10.5. Performance note and caching

Currently uimaFIT evaluates the patterns for TSDs once and caches the locations, but not the actual
merged type system description. A rescan can be forced using
TypeSystemDescriptionFactory.forceTypeDescriptorsScan(). This may change in future.

10.6. Potential problems

The mechanism works fine. However, there are specific issues with Java in general that one should
be aware of.

10.6.1. m2eclipse fails to copy descriptors to target/classes

There seems to be a bug in some older versions of m2eclipse that causes resources not always to be
copied to target/classes. If UIMA complains about type definitions missing at runtime, try to
clean/rebuild your project and carefully check the m2eclipse console in the console view for error
messages that might cause m2eclipse to abort.

10.6.2. Class version conflicts

A problem can occur if you end up having multiple incompatible versions of the same type system
in the classpath. This is a general problem and not related to the auto-detection feature. It is the
same as when you have incompatible version of a particular class (e.g. JCas wrapper or some third-
party-library) in the classpath. The behavior of the Java Classloader is undefined in that case. The
detection will do its best to try and load everything it can find, but the UIMA type system merger
may barf or you may end up with undefined behavior at runtime because one of the class versions
is used at random.

10.6.3. Classes and resources in the default package

It is bad practice to place classes into the default (unnamed) package. In fact it is not possible to
import classes from the default package in another class. Similarly it is a bad idea to put resources
at the root of the classpath. The Spring documentation on resources explains this in detail.

For this reason the types.txt resides in /META-INF/org.apache.uima.fit and it is suggest that type
system descriptors reside either in a proper package like /org/foobar/typesystems/XXX.xml or in
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/desc/types/XXX.xml.
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Chapter 11. Building an executable JAR

Building an executable JAR including uimaFIT components typically requires extra care. Per
convention, uimaFIT expects certain information in specific locations on the classpath, e.g. the
types.txt file that controls the automatic type system detection mechanism must reside at META-
INF/org.apache.uima.fit/types.txt. It often occurs that a project has several dependencies, each
supplying its own configuration files at these standard locations. However, this causes a problem
with naive approaches to creating an executable fat-jar merging all dependencies into a single JAR
file. Without extra care, the files supplied by the different dependencies overwrite each other
during the packaging process and only one file wins in the end. As a consequence, the types
configured in the other files cannot be detected at runtime. Such a native approach is taken, for
example, by the Maven Assembly Plugin.

The Maven Shade Plugin provides a convenient alternative for the creation of executable fat-jars, as
it provides a mechanism to concatenate the configuration files from different dependencies while
creating the fat-jar. To use the Maven Shade Plugin with uimaFIT, use the following configuration
section in your POM file and make sure to change the mainClass as required for your project:

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.2</version>
<executions>
<execution>
<phase>package</phase>
<goals><goal>shade</goal></goals>
<confiquration>
<transformers>
<!-- Set the main class of the executable JAR -->
<transformer
implementation="org.apache.maven.plugins.shade.\
resource.ManifestResourceTransformer">
<mainClass>org.apache.uima.fit.example.Main</mainClass>
</transformer>
<!-- Merge the uimaFIT configuration files -->
<transformer
implementation="org.apache.maven.plugins.shade.\
resource.AppendingTransformer">
<resource>\
META-INF/org.apache.uima.fit/fsindexes.txt\
</resource>
</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.\
resource.AppendingTransformer">
<resource>\
META-INF/org.apache.uima.fit/types.txt\
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</

</pl
</plug
</build>

NOTE

NOTE

</resource>
</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.\
resource.AppendingTransformer">
<resource>\
META-INF/org.apache.uima.fit/typepriorities.txt\
</resource>
</transformer>
<!-- Merge CAS validation check registrations -->
<transformer
implementation="org.apache.maven.plugins.shade.\
resource.ServicesResourceTransformer"/>
</transformers>
<l==
Prevent huge shaded artifacts from being deployed
to a Maven repository (remove if not desired)
-->
<outputFile>\
${project.build.directory}/\
${artifactId}-${version}-standalone.jar\
</outputFile>
</configuration>
</execution>
executions>
ugin>
ins>

Due to formatting constraints in the PDF version of this manual, the example above
uses \ to indicate a line continuation. Remove these and join the lines when you
copy/paste this example.

You might want to consider also merging additional files, such as LICENSE, NOTICE,
or DEPENDENCY files, configuration files for the Java Service Locator API, or files
used by other frameworks that uses similar conventions for configuration file
locations. Check the documentation of the Maven Shade Plugin, as different kinds of
configuration files require different specialized transformers.
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Chapter 12. uimaFIT Maven Plugin

uimaFIT dynamically generates UIMA component descriptions from annotations in the Java source
code. The uimaFIT Maven plugin provides the ability to automatically create such annotations in
already compiled classes and to automatically generate XML descriptors from the annotated
classes.

12.1. enhance goal

The goal enhance allows automatically augmenting compiled classes with uimaFIT annotations.
Information like vendor, copyright, or version can be obtained from the Maven POM. Additionally,
descriptions for parameters and components can be generated from Javadoc comments. Existing
annotations are not overwritten unless forced.

<plugin>
<groupId>org.apache.uima</groupId>
<artifactId>uimafit-maven-plugin</artifactId>
<version></version> <!-- change to latest version -->
<configuration>
<!-- OPTIONAL -->
<!-- Qverride component description in generated descriptors. -->
<overrideComponentDescription>false</overrideComponentDescription>

<!-- OPTIONAL -->
<!-- Override version in generated descriptors. -->
<overrideComponentVersion>false</overrideComponentVersion>

<!-- OPTIONAL -->
<!-- Qverride vendor in generated descriptors. -->
<overrideComponentVendor>false</overrideComponentVendor>

<!-- OPTIONAL -->
<!-- Qverride copyright in generated descriptors. -->
<overrideComponentCopyright>false</overrideComponentCopyright>

<!-- OPTIONAL -->
<!-- Version to use in generated descriptors. -->
<componentVersion>${project.version}</componentVersion>

<!-- OPTIONAL -->
<!-- Vendor to use in generated descriptors. -->
<componentVendor>Apache Foundation</componentVendor>

<!-- OPTIONAL -->
<!-- Copyright to use in generated descriptors. -->
<componentCopyright>Apache Foundation 2013</componentCopyright>

<!-- OPTIONAL -->
<!-- Source file encoding. -->
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<encoding>${project.build.sourceEncoding}</encoding>

<!-- OPTIONAL -->

<!-- Generate a report of missing meta data in
$project.build.directory/uimafit-missing-meta-data-report.txt -->

<generateMissingMetaDataReport>true</generateMissingMetaDataReport>

<!-- OPTIONAL -->

<!-- Fail on missing meta data. This setting has no effect unless
generateMissingMetaDataReport is enabled. -->

<failOnMissingMetaData>false</failOnMissingMetaData>

<!-- OPTIONAL -->
<!-- Constant name prefixes used for parameters and external resources,
e.g. "PARAM_". -->
<parameterNameConstantPrefixes>
<prefix>PARAM_<prefix/>
</parameterNameConstantPrefixes>

<!-- OPTIONAL -->
<!-- Fail on missing meta data. This setting has no effect unless
generateMissingMetaDataReport is enabled. -->
<externalResourceNameConstantPrefixes>
<prefix>KEY_<prefix/>
<prefix>RES_<prefix/>
</externalResourceNameConstantPrefixes>

<!-- OPTIONAL -->

<!-- Mode of adding type systems found on the classpath via the
uimaFIT detection mechanism at compile time to the generated
descriptor. By default, no type systems are added. -->

<addTypeSystemDescriptions>NONE</addTypeSystemDescriptions>

</configuration>
<executions>
<execution>
<id>default</id>
<phase>process-classes</phase>
<goals>
<goal>enhance</goal>
</goals>
</execution>
</executions>
</plugin>

When generating descriptions for configuration parameters or external resources, the plugin
supports a common practice of placing the Javadoc on a constant field instead of the parameter or
external resource field. Per default, parameter name constants must be prefixed with PARAM_ and
external resource key constants must be prefixed with RES_ * or “KEY_.
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/**

* Enable or disable my feature.

*/

public static final String PARAM_ENABLE_FEATURE = "enableFeature";
@ConfigurationParameter (name=PARAM_ENABLE_FEATURE)

private boolean enableFeature;

/**

* My external resource.

*/

public static final String RES_MY_RESOURCE = "resource";
@ExternalResource(key=RES_MY_RESOURCE)

private MyResource resource;

By enabling generateMissingMetaDataReport, the build can be made to fail if meta data such as
parameter descriptions are missing. A report about the missing data is generated in uimafit-
missing-meta-data-report.txt in the project build directory.

12.2. generate goal

The generate goal generates XML component descriptors for UUMA components.

<plugin>
<groupIld>org.apache.uima</groupId>
<artifactId>uimafit-maven-plugin</artifactId>
<version></version> <!-- change to latest version -->
<configuration>
<!-- OPTIONAL -->
<!-- Path where the generated resources are written. -->
<outputDirectory>
${project.build.directory}/generated-sources/uimafit
</outputDirectory>

<!-- OPTIONAL -->
<!-- Skip generation of META-INF/org.apache.uima.fit/components.txt -->
<skipComponentsManifest>false</skipComponentsManifest>

<!-- OPTIONAL -->
<!-- Source file encoding. -->
<encoding>${project.build.sourceEncoding}</encoding>
</confiquration>
<executions>
<execution>
<id>default</id>
<phase>process-classes</phase>
<goals>
<goal>generate</qgoal>
</goals>

38



</execution>
</executions>
</plugin>

In addition to the XML descriptors, a manifest file is written to META-
INF/org.apache.uima.fit/components.txt. This file can be used to conveniently locate the XML
descriptors, which are written in the packages next to the classes they describe.

classpath*:org/apache/uima/fit/examples/ExampleComponent.xml

It is recommended to use both, the enhance and the generate goal. Both goals should be specified in
the same execution, first enhance, then generate:

<execution>
<id>default</id>
<phase>process-classes</phase>
<goals>
<goal>enhance</goal>
<goal>generate</qgoal>
</goals>
</execution>
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Chapter 13. Migration Guide

This section provides helpful information on incompatible changes between versions.

13.1. Version 3.0.x to 3.1.x

Changes to ExternalResourceFactory

The renaming of methods in the ExternalResourcefFactory had unfortunately introduced another
name clash between unrelated methods. To fix this clash, the following methods have been
renamed from bindResource to bindResourceOnce:

* void bindResource(ResourceCreationSpecifier aDesc, String aBindTo,
ExternalResourceDescription aRes) was removed and replaced by void
bindResourceOnce(ResourceCreationSpecifier aDesc, String aBindTo,

ExternalResourceDescription aRes)

* void bindResource(ExternalResourceDescription aRes, String aBindTo,
ExternalResourceDescription  aNestedRes) was deprecated and replaced by void
bindResourceOnce(ExternalResourceDescription aRes, String aBindTo,

ExternalResourceDescription aNestedRes)

* void bindResource(ResourceManagerConfiguration aResMgr(fg, String aBindTo,
ExternalResourceDescription aRes) was  deprecated and replaced by void
bindResourceOnce(ResourceManagerConfiguration aResMgr(Cfg, String aBindTo,

ExternalResourceDescription aRes)

* void bindResource(ResourceCreationSpecifier aDesc, String aBindTo, String aRes) was
removed and replaced by void bindResourceOnceWithoutNested(ResourceCreationSpecifier
aDesc, String aBindTo, String aRes)

* void bindResource(ResourceManagerConfiguration aResMgrCfg, String aBindTo, String aRes) was
deprecated and replaced by void bindResourceOnceWithoutNested(ResourceManagerConfiguration
aResMgrCfg, String aBindTo, String aRes)

* void bindResource(ResourceSpecifier aDesc, String aKey, String alrl) was deprecated and
replaced by void bindResourceUsingUrl(ResourceSpecifier aDesc, String aKey, String aUlrl)

13.2. Version 2.x to 3.x

Legacy support module removed

The legacy support in uimaFIT 2.x was present allow being compatible with the pre-Apache
uimaFIT versions which were based on UIMA 2.x. Since uimaFIT 3.x is not compatible with UIMA
2.X anyway, the legacy module was removed now.

Using List instead of Collection

The CasUtil, JCasUtil and FSCollectionFactory classes were adjusted to return results using List
instead of the more general Collection. Often, lists are already used internally and then again
wrapped into new lists in client code. This API change avoids this in the future.

Throwing specific exceptions instead of UIMAEXxception
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Several uimaFIT methods were throwing the generic UIMAException. These have been adjusted to
declare throwing several of the sub-types of UIMAException to be better able to handle specific
causes of errors in client code.

CasUtil.selectSingle signature changed

Signature of CasUtil.selectSingle has been changed to return AnnotationFS. The original signature
is available as selectSingleFS

Removal of deprecated methods

Various methods that were deprecated in uimaFIT 2.4.0 or earlier have been removed in this
release. For details, please refer to the api-change-report.html file included in the release.

Changes to ExternalResourceFactory

Most methods in the ExternalResourceFactory have seen changes to their names and signature to
avoid problematic ambiguities as well as to be shorter. In general, the External component of the
method names was either removed or replaced. So most methods called
createExternalResourceDescription are now called createResourceDescription. However, some have
also been given a more specific name and/or a slightly different order of parameters. For example,
this method

public static ExternalResourceDescription createExternalResourceDescription(
Class<? extends SharedResourceObject> alnterface, String aUrl, Object... aParams)

was changed to

public static ExternalResourceDescription createSharedResourceDescription(
String aUlrl, Class< extends SharedResourceObject> alnterface, Object... aParams)

Changes to logging

UIMA v3 has is using SLF4]. As a consequence, the ExtendedLogger which uimaFIT had returned on
calls to getLogger() has been removed and instead the regular UIMA v3 logger class is returned
which offers methods quite compatible with what ExtendedLogger offered before. However, it is
recommended that you go through all your logging calls and replace calls which use string
concatenation to construct the logging message with corresponding calls using placeholders. For

example, replace getlogger().error("Cannot access + filename, exception); with
getlLogger().error("Cannot access {}", filename, exception);.

Version requirements

Depends on UIMA 3.0.2, Spring Framework 4.3.22 and Java 8.

13.3. Version 2.3.0 to 2.4.0

Version requirements

Depends on UIMA 2.10.2, Spring Framework 3.2.16 and Java 7.

Mind the updated version requirements. There should be no other potentially problematic changes
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in this upgrade.

13.4. Version 2.2.0 to 2.3.0

CasIOUtil deprecated

The functionality of the uimaFIT CasIOUtil class has been superseded by the core UIMA class
CasIOUtils added in UIMA 2.9.0. The method signatures in the new class are not the same, but
provide more functionality. CasIOUtil has been deprecated and documentation has been added
which of the CasIOUtils methods should be used instead.

Version requirements

Depends on UIMA 2.9.1, Spring Framework 3.2.16 and Java 7.

Mind the updated version requirements. There should be no other potentially problematic changes
in this upgrade.

13.5. Version 2.1.0 to 2.2.0

Version requirements

Depends on UIMA 2.8.1, Spring Framework 3.2.16 and Java 7.

Mind the updated version requirements. There should be no other potentially problematic changes
in this upgrade.

13.6. Version 2.0.0 to 2.1.0

Version requirements

Depends on UIMA 2.6.0 and Java 6.

AnnotationFactory.createAnnotation()

No longer throws UIMAExcption. If this exception was cought, some IDEs may complain here after
upgrading to uimaFIT 2.1.0.

13.7. Version 1.4.0 to 2.0.0

Version requirements

Depends on UIMA 2.4.2.

Backwards compatibility

Compatibility with legacy annotation is provided by the Legacy support module.

Change of Maven groupld and artifactld

The Maven group ID has changed from org.uimafit to org.apache.uima.
The artifact ID of the main uimaFIT artifact has been changed from vimafit to uimafit-core.

Change of package names
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The base package has been renamed from org.uimafit to org.apache.uima.fit. A global
search/replace on Java files with for lines starting with import org.uimafit and replacing that with
import org.apache.uima.fit should work.

@ConfigurationParameter

The default value for the mandatory attribute now is true. The default name of configuration
parameters is now the name of the annotated field only. The classname is no longer prefixed. The
method ConfigurationParameterFactory.createConfigurationParameterName() that was used to
generate the prefixed name has been removed.

Type detection: META-INF/org.uimafit folder
The META-INF/org.uimafit was renamed to META-INF/org.apache.uima.fit.

JCasUtil

The deprecated JCasUtil.iterate() methods have been removed. JCasUtil.select() should be used
instead.

AnalysisEngineFactory

All createAggregateXXX and createPrimitiveXXX methods have been renamed to createEngineXXX. The
old names are deprecated and will be removed in future versions.

All createAnalysisEngineXXX methods have been renamed to createEngineXXX. The old names are
deprecated and will be removed in future versions.

CollectionReaderFactory

All createDescriptionXXX methods have been renamed to createReaderDescriptionXXX. The old
names are deprecated and will be removed in future versions.

All createCollectionReaderXXX methods have been renamed to createReaderXXX. The old names are
deprecated and will be removed in future versions.

JCaslterable

JCasIterable now only accepts reader and engine descriptions (no instances) and no longer
implements the Iterator interface. Instead, new J(CasIterator has been added, which replaces
JCasIterable in that respect.

CasDumpWriter

org.uimafit.component.xwriter.CASDumpWriter has been renamed to
org.apache.uima.fit.component.CasDumpWriter.

CpePipeline

CpePipeline has been moved to a separate module with the artifact ID vimafit-cpe to reduce the
dependencies incurred by the main uimaFIT artifact.

XWriter removed

The XWriter and associated file namers have been removed as they were much more complex then
acutally needed. As an alternative, CasIOUtil has been introduced providing several convenience
methods to read/write JCas/CAS data.
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JCasFactory

Methods only loading JCas data have been removed from IJCasFactory. The new methods in
CasIOUtil can be used instead.
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