Apache uimaFIT™ Guide and Reference

Written and maintained by the Apache
UIMA™ Development Community

Version 2.4.0

Copyright © 2012, 2017 The Apache Software Foundation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "ASIS' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date November, 2017

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

O 1 1100 1 Tox 1 o o I 1
1.1. Simplify Component Implementationc.uuiiriieeirieeeier e e e e eeaenes 1

1.2. Simplify Component INStantiationcooooiiiiiiiiiii e, 1
N I (0] 4 T e = L PPN 1

1.2.2. From an XML deSCIiPLOruvvuuiieeeeiieeiiiiiee e e e e e e eeiiiees e e e e e e e et e e e e e eeeeees 2

1.3, IS thiS ChEEIING?coeeeeeeieee e e e e e e e e e e e eanne 2

FLA, CONCIUSION ..ttt e e e ettt s e e e e e e e e e et bbb e s e e e e eeeeetbaa e eeaaaeeenes 3

A €1 111 o S = = 5
2.1. Adding uimaFIT tO YOUr PrOJECEccevvveiiiieeeeeeeiiee e e e e 5
210 IMTBVEIN USEIS ...t e ettt e et e et et e e e e et e e e e et e e et e b e e e era s 5

2.1.2. NON-MEVEN USEN'S ...ttt e e e e e e e 5

2.2. A simple analysis engine implementationc.uuuiiiieierreeeiiiinen e 5

2.3. RUNNING the 8NalySIS ENQINEuutuiiiiiiiiiiiiiiiiiiiiiiiiiibeiebbbeeebbbeeeeeeebeeeeeeeeeeeeeeeeeeeene 6

2.4. Generate a desCriptor iluuuuririiiiiiiiii 6

G . | o 1=, 1= 9
4. RUNNING EXPEIMENES ... 11
B CAS ULHTIES i 13
5.1, ACCESS MELNOUS ... 13

6. Configuration ParamELErScciiiiiiiiii e e e e e e e e et s e e e e e e a et 15
7. EXTENEl RESOUICES ...ttt ettt e e e e e ettt bbb e e e e e e e e eebbbbaeeeaaaeeees 19
8 I == o TH o1 1o £ o o 19
7.1.1. Regular UIMA COMPONENEScovvieiiiieeeeeeeiiiiie s s e e e e e eeatii e s e e e e e evannn e e e 19

7.1.2. uimaFI T-aware COMPONENESuuuuuuunninieiiinininininaneeaaeaenenenenenrnenenenenneenenees 20

7.1.3. Resources extending Resource ImplBasecoovvevvviiiiiiiiiiieeicien e 22

7.1.4. Resources implementing SharedResourceObJECtevvveeeveveeiiiiiinieeeeeeeenns 22

7.1.5. Note on injecting reSourCeS iNtO FMESOUICESvurrrrrrrrrererrrnenenenenenenenennnenes 23

7.2. RESOUICE TOCALIONSceeeeeeii e e ettt ettt e e e e e et e s e e e e e e e eatbea e e e e eeeeennnes 23

8. TYPE SysSteM DELECHIONceeieeiiiie e e s e e e e e ettt e e e e e e e e ee et s e e e e eeeennne 25
8.1. Making types auto-deteCtableooovviiiiiiiiiiiiiiiiii 25

8.2. Making index definitions and type priorities auto-detectableccooeeeeiiiiiiiinnnnnn. 25

8.3. UsSiNg type aUtO-eteCiONccovieeiiiiiii e e e e e e e e e e e e e e e e e e eeennes 26

8.4. Multiple META-INF/org.apache.uimafit/typestxt filescccvvvviiii i, 26

8.5. Performance note and CaChingoooiiiiiiiiiiiii e 27

8.6. Potential Problemsuueiiii i 27
8.6.1. m2eclipse fails to copy descriptors to target/classesvveevveeeveveviiinnnnnn. 27

8.6.2. Class version CONFHICEScuvvviiiiiiiiii 27

8.6.3. Classes and resources in the default packageooevvveeiiiiiiiiiiiiiiiciieee, 27

9. Building an exeCutable JARoiii i aaan 29
10. UIMaAFIT MaVEN PLUGIN .oeiiiiiiiiiiiiieeee ettt ettt e et et e e et eeeeeeeeeeeeeeeees 31
10.1. €NNANCE GO .. .cieeeieiiiiie e e et a e aeraa 31

10.2. QENEIALE GOl ...oveeeveiiii e e e e e e e e r e a e 32

Y 1o = Lo I U T L= PP PPPPPPPPPPPPPP 35
V=6 Moo 2 0 (o 2 X 0 35
11.2. VErsSion 2.2.0 10 2.3.0 .uuuuuuuiiiiitiiiiitititititititib i 35
11.3. VErSion 2.1.0 10 2.2.0 .euuuiuiiiiiiiiniiiiiiiiitititieit bttt 35
11.4. Version 2.0.0 10 2.2.0 ..uuuuuuuiiiiiiiiiiiiiiiieiieiiiieitietieeee e 35
11.5. VErsion 1.4.0 10 2.0.0 ..ueuuuuuumuneinunitititiniiitiiitibib bbb 35
11.6. Legacy SUPPOrt MOCUIEuuieieeee it e e s e e e e e e e e e e ean e e e e e 36

Apache uimaFIT™ Guide and Reference iii

Chapter 1. Introduction

While uimaFIT provides many features for aUIMA devel oper, there are two overarching themes
that most features fall under. These two sides of uimaFI T are,while complementary, largely
independent of each other. One of the beauties of uimaFIT is that a devel oper that uses one side of
uimaFI T extensively is not required to use the other side at all.

1.1. Simplify Component Implementation

Thefirst broad theme of uimaFI T provides features that simplify component implementation. Our
favorite example of thisisthe @onf i gur at i onPar anet er annotation which allows you to
annotate a member variable as a configuration parameter. This annotation in combination with

the method Conf i gurati onParameterinitializer.initialize() completely automates
the process of initializing member variables with values from the Ui naCont ext passed into your
analysis engine'sinitialize method. Similarly, the annotation @xt er nal Resour ce annotation in
combination with the method Ext er nal Resourcel nitializer.initialize() completely
automates the binding of an external resource as defined in the Ui maCont ext to a member
variable. Dispensing with manually writing the code that performs these two tasks reduces effort,
eliminates verbose and potentially buggy boiler-plate code, and makes implementing a UIMA
component more enjoyable. Consider, for example, amember variable that is of type Local e. With
uimaFI T you can simply annotate the member variable with @onf i gur at i onPar anet er and
have your initialize method automatically initialize the variable correctly with a string value in the
Ui maCont ext suchasen_US.

1.2. Simplify Component Instantiation

The second broad theme of uimaFI T provides features that simplify component instantiation.
Working with UIMA, have you ever said to yourself “but | just want to tag some text! ?” What does
it take to “just tag some text?’ Here'salist of things you must do with the traditional approach:

* wrap your tagger asaUIMA analysis engine

» write adescriptor file for your analysis engine

» writea CAS consumer that produces the desired output
* write another descriptor file for the CAS consumer

» write adescriptor file for a collection reader

 write adescriptor file that describes a pipeline

* invoke the Collection Processing Manager with your pipeline descriptor file

1.2.1. From a class

Each of these steps has its own pitfalls and can be rather time consuming. Thisis arather
unsatisfying answer to our simple desire to just tag some text. With uimaFIT you can literally
eliminate al of these steps.

Here's a simple snippet of Java code that illustrates “tagging some text” with uimaFIT:

import static org.apache.uinma.fit.factory.JCasFactory. createJCas;

Introduction 1

From an XML descriptor

inmport static org.apache. uina.fit.pipeline.SinplePipeline.runPipeline;
import static
org. apache. uima.fit.factory. Anal ysi SEngi neFact ory. cr eat eEngi neDescri pti on;

JCas jCas = createJCas();
j Cas. set Docunent Text ("sone text");
runPi pel i ne(j Cas,
cr eat eEngi neDescri pti on(MyTokeni zer. cl ass),

cr eat eEngi neDescri pti on(MyTagger . cl ass));

for(Token token : iterate(jCas, Token.class)){
System out . printl n(token.getTag());
}

This code uses severa static method imports for brevity. And while the terseness of this code won't
make a Python programmer blush - it is certainly much easier than the seven steps outlined above!

1.2.2.

From an XML descriptor

uimaFI T provides mechanisms to instantiate and run UIMA components programmatically with or
without descriptor files. For example, if you have a descriptor file for your analysis engine defined
by MyTagger (asshown above), then you can instead instantiate the analysis engine with:

Anal ysi sengi neDescri ption tagger = createEngi neDescri pti on(
"nypackage. MyTagger");

Thiswill find the descriptor file mypackage/ MyTagger . xnml by name. Similarly, you can find a
descriptor file by location with cr eat eEngi neDescr i pti onFr onPat h() . However, if you want
to dispense with XML descriptor files altogether (and you probably do), you can use the method
creat eEngi neDescri pti on() asshown above. One of the driving motivations for creating the
second side of uimaFI T is our frustration with descriptor files and our desire to eliminate them.
Descriptor files are difficult to maintain because they are generally tightly coupled with java code,
they decay without warning, they are wearisome to test, and they proliferate, among other reasons.

1.3. Is this cheating?

One question that is often raised by new uimaFIT usersiswhether or not it breaks the UIMA
way. That is, does adopting uimaFI T lead me down a path of creating UIMA components and
systems that are incompatible with the traditional UIMA approach? The answer to this question
isno. For starters, uimaFI T does not skirt the UIMA mechanism of describing components - it
only skipsthe XML part of it. For example, when the method cr eat eEngi neDescri pti on()
is called (as shown above) an Anal ysi sEngi neDescri pti on is created for the analysis engine.
Thisisthe same object type that is instantiated when a descriptor file is used. So, instead of
parsing XML to instantiate an analysis engine description from XML, uimaFI T uses afactory
method to instantiate it from method parameters. One of the happy benefits of this approach is
that for agiven Anal ysi sEngi nedDescri pti on you can generate an XML descriptor file using
Anal ysi sEngi neDescri ption.toXM.() . So, uimaFIT actually provides avery simple and
direct path for generating XML descriptor files rather than manually creating and maintaining
them!

It isalso useful to clarify that if you only want to use one side or the other of uimaFIT, then
you are free to do so. Thisis possible precisely because uimaFI T does not workaround UIMA's
mechanisms for describing components but rather uses them directly. For example, if the only

Introduction Apache uimaFIT™ Version 2.4.0

Conclusion

thing you want to use in uimaFI T isthe @onf i gur at i onPar aret er , then you can do so
without worrying about what effect this will have on your descriptor files. This is because your
analysis engine will beinitialized with exactly the same Ui maCont ext regardless of whether

you instantiate your analysis engine in the UIMA way or use one of uimaFIT's factory methods.
Similarly, aUIMA component does not need to be annotated with @onf i gur at i oPar anet er
for you to make use of the cr eat eEngi neDescri pti on() method. Thisis because when you
pass configuration parameter valuesin to the cr eat eEngi neDescri pti on() method, they are
added to an Anal ysi sEngi neDescri pti on whichisused by UIMA to populate a Ui naCont ext
- just asit would if you used a descriptor file.

1.4. Conclusion

Because uimaFI T can be used to simplify component implementation and instantiation it is easy to
assume that you can't do one without the other. This page has demonstrated that while these two
sides of uimaFIT complement each other, they are not coupled together and each can be effectively
used without the other. Similarly, by understanding how uimaFI T uses the UIMA component
description mechanisms directly, one can be assured that uimaFI T enables UIMA development that
is compatible and consistent with the UIMA standard and APIs.

Apache uimaFIT™ Version 2.4.0 Introduction 3

Chapter 2. Getting Started

This quick start tutorial demonstrates how to use uimaFIT to define and set a configuration
parameter in an analysis engine, run it, and generate a descriptor file for it. The complete code for
this example can be found in the uimaFI T-examples module.

2.1. Adding uimaFIT to your project

The following instructions describe how to add uimaFI T to your project's classpath.

2.1.1. Maven users

If you use Maven, then uimaFI T can be added to your project by simply adding uimaFIT asa
project dependency by adding the following snippet of XML to your pom.xml file:

<dependency>
<gr oupl d>or g. apache. ui ma</ gr oupl d>
<artifactld>uimafit-core</artifactld>
<versi on>2. 4. 0</ ver si on>

</ dependency>

uimaFI T distributions are hosted by Maven Central and so no repository needs to be added to your
pom.xml file.

2.1.2. Non-Maven users

If you do not build with Maven, then download uimaFI T from the Apache UIMA downloads pagel.
The file name should be uimafit-2.4.0-bin.zip. Download and unpack this file. The contents of the
resulting upacked directory will contain adirectory called | i b. Add all of thefilesin this directory
to your classpath.

2.2. A simple analysis engine implementation

Here is the complete analysis engine implementation for this example.

public class GetStartedQui ckAE
ext ends org. apache. ui ma. fit.conponent. JCasAnnot at or _| npl Base {

public static final String PARAM STRI NG = "stringParani;
@Confi gur ati onParanet er (name = PARAM STRI NG
private String stringParam

@verride

public void process(JCas jCas) throws Anal ysi sengi neProcessException {
Systemout.println("Hello world! Say 'hi' to " + stringParan;

}

}

Thefirst thing to note is that the member variable st ri ngPar amis annotated with
@onfi gur at i onPar anmet er which tellsuimaFIT that thisis an analysis engine configuration
parameter. It is best practice to create a public constant for the parameter name, here

1 http://uima.apache.org/downl oads.cgi

Getting Started 5

http://uima.apache.org/downloads.cgi
http://uima.apache.org/downloads.cgi

Running the analysis engine

PARAM_STRI NG The second thing to note is that we extend uimaFIT's version of the
JCasAnnot at or _I npl Base. Theinitialize method of this super class calls:

ConfigurationParaneterlnitializer.initializeConfigurationParaneters(
Obj ect, Ui maCont ext)

which populates the configuration parameters with the appropriate contents of the Ui maCont ext .
If you do not want to extend uimaFIT's JCasAnnot at or _I npl Base, then you can call this
method directly inthei ni ti al i ze method of your analysis engine or any class that implements
Initializable.Youcan call thismethod for an instance of any class that has configuration
parameters.

2.3. Running the analysis engine

Thefollowing lines of code demonstrate how to instantiate and run the analysis engine from amain
method:

JCas jCas = JCasFactory.createlCas();

Anal ysi sengi ne anal ysi sengi ne = Anal ysi sEngi neFact ory. cr eat eEngi ne(
Get St art edQui ckAE. cl ass,
Get St art edQui ckAE. PARAM STRI NG, " ui maFI T");

anal ysi sEngi ne. process(j Cas);

In amore involved example, we would probably instantiate a collection reader and run this
analysis engine over acollection of documents. Here, it sufficesto simply createaJCas. Line 3
instantiates the analysis engine using Anal ysi sEngi neFact or y and sets the string parameter
named st r i ngPar amto the value ui maFI T. Running this simple program sends the following
output to the console;

Hello world! Say 'hi' to uimaFIT

Normally you would be using a type system with your analysis components. When using uimaFI T,
it is easiest to keep your type system descriptors in your source folders and make them known to
uimaFIT. To do so, create afile META- | NF/ or g. apache. ui ma. fit/types.txt inasource
folder and add references to al your type descriptors to the file, one per line. Y ou can also use
wildcards. For example:

cl asspat h*: or g/ apache/ ui ma/ fit/exanpl es/type/ Token. xm
cl asspat h*: or g/ apache/ ui ma/ fit/ exanpl es/ type/ Sent ence. xm
cl asspat h*: or g/ apache/ ui ma/ fit/exanpl es/tutorial/type/*.xmn

2.4. Generate a descriptor file

The following lines of code demonstrate how a descriptor file can be generated using the class
definition:
Anal ysi sengi ne anal ysi sengi ne = Anal ysi sEngi neFact ory. cr eat eEngi ne(
Get St art edQui ckAE. cl ass,
Get St art edQui ckAE. PARAM STRI NG, " ui maFI T") ;

anal ysi sengi neDescri ption. t oXM(

6 Getting Started Apache uimaFIT™ Version 2.4.0

Generate a descriptor file

new Fi | eQut put St rean(" Get St art edQui ckAE. xm ")) ;

If you open the resulting descriptor file you will see that the configuration parameter
st ri ngPar amis defined with the value set to ui maFI T. We could now instantiate an analysis
engine using this descriptor file with aline of code like this:

Anal ysi sengi neFact ory. cr eat eEngi ne(" Get St art edQui ckAE") ;

But, of course, we really wouldn't want to do that now that we can instantiate analysis engines
using the class definition as was done above!

This chapter, of course, did not demonstrate every feature of uimaFI T which provides support for
annotating external resources, creating aggregate engines, running pipelines, testing components,
among others.

Apache uimaFIT™ Version 2.4.0 Getting Started

Chapter 3. Pipelines

UIMA is a component-based architecture that allows composing various processing components
into a complex processing pipeline. A pipeline typicaly involves a collection reader which ingests
documents and analysis engines that do the actua processing.

Normally, you would run a pipeline using a UIMA Collection Processing Engine or using UIMA
AS. uimaFIT offers athird aternative that is much simpler to use and well suited for embedding
UIMA pipelinesinto applications or for writing tests.

As uimaFIT does not supply any readers or processing components, we just assume that we have
written three components:

» Text Reader - readstext filesfrom adirectory
» Tokeni zer - annotates tokens
» TokenFrequencyWi ter - writesalist of tokens and their frequency to afile

We create descriptors for all components and run them as a pipeline:

Col | ecti onReader Descri ption reader =
Col | ect i onReader Fact ory. cr eat eReader Descri pti on(
Text Reader . cl ass,
Text Reader . PARAM | NPUT, "/ hone/ ui mafit/docunents");

Anal ysi sengi neDescri ption tokenizer =
Anal ysi sEngi neFact ory. cr eat eEngi neDescri pti on(
Tokeni zer . cl ass) ;

Anal ysi sengi neDescri ption tokenFrequencyWiter =
Anal ysi sEngi neFact ory. cr eat eEngi neDescri pti on(
TokenFr equencyWiter.cl ass,
TokenFrequencyWi t er. PARAM OQUTPUT, "counts.txt");

Si npl ePi pel i ne. runPi pel i ne(reader, tokenizer, witer);

Instead of running the full pipeline end-to-end, we can also process one document at a time and
inspect the analysis results:

Col | ecti onReader Descri pti on reader =
Col | ecti onReader Fact ory. cr eat eReader Descri pti on(
Text Reader . cl ass,
Text Reader . PARAM | NPUT, "/ hone/ ui mafit/docunents");

Anal ysi sengi neDescri ption tokenizer =
Anal ysi sEngi neFact ory. cr eat eEngi neDescri pti on(
Tokeni zer. cl ass) ;

for (JCas jcas : SinplePipeline.iteratePipeline(reader, tokenizer)) {
System out . printf("Found %l t okens%"
JCasUtil.sel ect(jcas, Token.class).size());

Pipelines 9

Chapter 4. Running Experiments

The uimafit-examples module contains a package org.apache.uima.fit.examples.experiment.pos
which demonstrates a very simple experimental setup for testing a part-of-speech tagger. Y ou may
find this example more accessible if you check out the code from subversion and build it in your
own environment.

The documentation for this example can be found in the code itself. Please refer to
RunExperi nent asastarting point. The following is copied from the javadoc comments of that

file:

RunExper i nent demonstrates a very common (though simplified) experimental
setup in which gold standard datais available for some task and you want to
evaluate how well your analysis engine works against that data. Here we are
evaluating Basel i neTagger whichisa (ridiculously) simple part-of-speech
tagger against the part-of-speech tags found in sr ¢/ mai n/ r esour ces/ or g/
apache/ ui ma/ fit/ exanpl es/ pos/ sanpl e-gol d. t xt

The basic strategy is as follows:

post the data as is into the default view,

parse the gold-standard tokens and part-of-speech tags and put the results into another view
we will call GOLD_VIEW,

create another view called SYSTEM_VIEW and copy the text and Token annotations from
the GOLD_VIEW into this view,

runthe Basel i neTagger onthe SYSTEM_VIEW over the copied Token annoations,

evaluate the part-of-speech tags found in the SYSTEM_VIEW with those in the
GOLD_VIEW.

Running Experiments 11

Chapter 5. CAS Utilities

uimaFIT facilitates working with the CAS and JCas by offering various convenient methods for
accessing and navigating annotations and feature structures. Additionally, the the convenience
methods for JCas access are fully type-safe and return the JCas type or a collection of the JCas type
which you wanted to access.

5.1. Access methods

uimaFI T supports the following convenience methods for accessing CAS and JCas structures. All
methods respect the UIMA index definitions and return annotations or feature structuresin the
order defined by the indexes. Unless the default UIMA index for annotations has been overwritten,
annotations are returned sorted by begin (increasing) and end (decreasing).

sel ect (cas, type) - fetchall annotations of the given type from the CAS/JCas. Variants
of this method also exist to fetch annotations from a FSList or FSArray.

sel ect Al | (cas) - fetch all annotations from the CAS or fetch all feature structures from
the JCas.

sel ect Bet ween(type, annotationl, annotation2)* -fetchall annotations
between the given two annotations.

sel ect Cover ed(type, annotati on)* - fetch all annotations covered by the given
annotation. If this operation is used intensively, i ndexCover ed(. . .) should be used to
pre-cal culate annotation covering information.

sel ect Coveri ng(type, annotation)* - fetch all annotations covering the given
annotation. If this operation is used intensively, i ndexCoveri ng(...) should be used to
pre-cal culate annotation covering information.

sel ect Byl ndex(cas, type, n) -fetchthen-th feature structure of the given type.

sel ect Si ngl e(cas, type) - fetch the single feature structure of the given type. An
exception is thrown if thereis not exactly one feature structure of the type.

sel ect Si ngl eRel ati ve(type, annotation, n)* -fetchasingleannotation relative
to the given annotation. A positive n fetches the n-th annotation right of the specified
annotation, while the a negative n fetchesto the | eft.

sel ect Precedi ng(type, annotation, n)* -fetchthe n annotations preceding the
given annotation. If there are less then n preceding annotations, all preceding annotations are
returned.

sel ect Fol | owi ng(type, annotation, n)* -fetchthen annotationsfollowing the
given annotation. If there are less then n following annotations, all following annotations are
returned.

Note: For historical reasons, the method marked with * also exist in a version that accepts
a CAS/ICas asthefirst argument. These may not work as expected when the annoation
arguments provided to the method are from a different CAS/JCas/view. Also, for any
method accepting two annotations, these should come from the same CAS/JCas/view.

In future, the potentially problematic signatures may be deprecated, removed, or throw
exeptions if these conditions are not met.

CAS Utilities 13

Access methods

Note: Y ou should expect the structures returned by these methods to be backed by the
CAS/JCas contents. In particular, if you remove any feature structures from the CAS while
iterating over these structures may cause failures. For this reason, you should a so not hold
on to these structures longer than necessary, asisthe case for UIMA FSI t er at or sas
well.

Depending on whether one works with a CAS or JCas, the respective methods are available from
the JCasUtil or CasUtil classes.

JCasUtil expect a JCas wrapper classfor thet ype argument, e.g. sel ect (j cas, Token. cl ass)
and return this type or a collection using this generic type. Any subtypes of the specified type are
returned as well. CasUtil expectsa UIMA Type instance. For conveniently getting these, CasUtil
offersthe methods get Type(CAS, C ass<?>) or get Type(CAS, String) which fetch atype
either by its JCas wrapper class or by its name.

Unless annotations are specifically required, e.g. because begin/end offsets are required, the
JCasUtil methods can be used to access any feature structure inheriting from TOP, not only
annotations. The CasUtil methods generally work only on annotations. Alternative methods ending
in"FS"' are provided for accessing arbitrary feature structures, e.g. sel ect FS.

Examples:

/'l CAS version
Type tokenType = CasUtil . get Type(cas, "my.Token");
for (AnnotationFS token : CasUtil.sel ect(cas, tokenType)) {

_—

/1 JCas version
for (Token token : JCasUil.sel ect(jcas, Token.class)) {

.

14

CAS Utilities Apache uimaFIT™ Version 2.4.0

Chapter 6. Configuration Parameters

uimaFIT definesthe @onf i gur ati onPar anet er annotation which can be used to annotate the

fields of an analysis engine or collection reader. The purpose of this annotation is twofold:

* injection of parameters from the UIMA context into fields

* declaration of parameter metadata (mandatory, default value, description) which can be used

to generate XML descriptors

Inaregular UIMA component, parameters need to be manually extracted from the UIMA context,

typically requiring atype cast.

cl ass MyAnal ysi sEngi ne ext ends CasAnnot at or _I npl Base {
public static final String PARAM SOURCE DI RECTORY = "sourceDirectory";
private File sourceDirectory;

public void initialize(U maContext context)
throws ResourcelnitializationException {

sourceDirectory = new File((String) context.getConfigParaneterVal ue(
PARAM SOURCE_DI RECTORY)) ;

The component has no way to declare a default value or to declare if a parameter is optional or
mandatory. In addition, any documentation needs to be maintained in ! JavaDoc and in the XML
descriptor for the component.

With uimaFIT, al thisinformation can be declared in the component using the
@onfi gur at i onPar amet er annotation.

Table 6.1. @onf i gur ati onPar anet er annotation

Parameter Description Default
name parameter name name of annotated field
description description of the parameter
mandatory whether anon-null value must | true
be specified
defaultVaue the default valueif no valueis
specified

cl ass MyAnal ysi sEngi ne
ext ends org. apache. ui ma. fit.conponent. CasAnnot at or _I npl Base {

/**

* Directory to read the data from

*/
public static final String PARAM SOURCE DI RECTORY = "sourceDirectory";
@Confi gur ati onPar anet er (name=PARAM _SOURCE_DI RECTORY, def aul t Val ue=".")
private File sourceDirectory;

}

Configuration Parameters

15

Note, that it is no longer necessary to implement thei ni ti al i ze() method. uimaFIT takes care
of locating the parameter sour ceDi r ect ory inthe UIMA context. It recognizesthat theFi | e
classhasa St ri ng constructor and uses that to instantiate a new Fi | e object from the parameter.
A parameter is mandatory unless specified otherwise. If amandatory parameter is not specifiedin
the context, an exception is thrown.

The def aul t Val ue isused when generating an UIMA component description from the class.

It should be pointed out in particular, that uimaFI T does not make use of the default value when
injecting parametersinto fields. For thisreason, it is possible to have a parameter that is mandatory
but does have a default value. The default value is used as a parameter value when a component
description is generated viathe uimaFI T factories unless a parameter is specified in the factory
call. If acomponent description in created manually without specifying avalue for a mandatory
parameter, uimaFI T will generate an exception.

Note: Y ou can use the enhance goal of the uimaFIT Maven plugin to pick up the
parameter description from the JavaDoc and post it to the descri pti on field of the
@confi gur at i onPar amet er annotation. This should be preferred to specifying the
description explicitly as part of the annotation.

The parameter injection mechanism isimplemented in the
ConfigurationParanmeterlnitializer class. uimaFIT provides several base classes that
already comewithanini ti al i ze() method using theinitializer:

e CasAnnot at or _| npl Base™

* CasCol | ecti onReader _| npl Base
e CasConsuner _I| npl Base

* CasFl owControl | er _I npl Base

e CasMul tiplier_InplBase

e JCasAnnot at or _I| npl Base

e JCasCol | ecti onReader _I npl Base
e JCasConsuner _| npl Base

e JCasFl onControl | er _I npl Base
e JCasMul tiplier_Inpl Base

* Resource_I npl Base

TheConfi gurati onParaneterlnitializer canasobe used with shared resources:

cl ass MyShar edResour ceCbj ect i npl ements Shar edResour ceCbj ect {
public static final String PARAM VALUE = "Val ue";
@Confi gur ati onParanet er (name = PARAM VALUE, nmandatory = true)
private String val ue;

public void | oad(Dat aResource aDat a)
throws ResourcelnitializationException {

ConfigurationParaneterlnitializer.initialize(this, abData);

}

16

Configuration Parameters Apache uimaFIT™ Version 2.4.0

}

Fields that can be annotated with the @onf i gur at i onPar anet er annotation are any array or
collection types of primitive types (int, boolean, float, double), any enum types, any types that
define a constructor accepting asingle Stri ng (e.g. Fi | e), aswell as, fields of the typesPat t er n
and Local e.

Apache uimaFIT™ Version 2.4.0 Configuration Parameters

17

Chapter 7. External Resources

An analysis engine often uses some data model. This may be as ssmple as word frequency counts
or as complex as the model of a parser. Often these models can become quite large. If an analysis
engine is deployed multiple times in the same pipeline or runs on multiple CPU cores, memory
can be saved by using a shared instance of the data model. UIMA supports such a scenario by so-
called external resources. The following sections illustrates how external resources can be used
with uimaFIT.

First create a class for the shared data model. Usually this class would load its data from some URI
and then expose it viaits methods. An example would be to load word frequency counts and to
provide aget Fr equency() method. In our smple example we do not load anything from the
provided URI - we just offer amethod to get the URI from which data be loaded.

/1 Sinmple nodel that only stores the URI it was | oaded from Nornally data

/1 would be | oaded fromthe URI instead and made accessi bl e through nethods

/1 in this class. This sinple exanple only allows accessing the URI.

public static final class SharedModel inplenents SharedResource(bject {
private String uri;

public void | oad(Dat aResour ce aDat a)
throws ResourcelnitializationException {

uri = abData.getUri().toString();
}

public String getUri() { return uri; }
}

7.1. Resource injection

7.1.1. Regular UIMA components

When an external resource is used in aregular UIMA component, it is usually fetched from the
context, cast and copied to a class member variable.

cl ass MyAnal ysi séngi ne ext ends CasAnnot at or _I| npl Base {
final static String MODEL_KEY = "Model ";
private SharedMbdel nodel;

public void initialize(U maContext context)
throws Resourcelnitializati onException {

confi guredResource = (SharedModel)
get Cont ext () . get Resour ceCbj ect (MODEL_KEY) ;
}
}

uimaFI T can be used to inject external resources into such traditional components using the
cr eat eDependencyAndBi nd() method. To show that this works with any off-the-shelf UIMA
component, the following example uses uimaFI T to configure the OpenNL P Tokenizer:

/'l Create descriptor

Anal ysi sengi neDescri ption tokeni zer = creat eEngi neDescri ption(
Tokeni zer. cl ass,

External Resources 19

uimaFI T-aware components

U malti | . TOKEN_TYPE _PARAMETER, Token. cl ass. get Nane(),
U maUti | . SENTENCE_TYPE_PARAMETER, Sentence. cl ass. get Nanme());

/'l Create the external resource dependency for the nmodel and bind it
cr eat eDependencyAndBi nd(t okeni zer, U nmaUtil. MODEL_PARAMETER,

Tokeni zer Model Resour cel npl . cl ass,

"http://opennl p. sour cef orge. net/ nodel s-1. 5/ en-token. bin");

Note: We recommend declaring parameter constants in the classes that use them, e.g.
herein Tokeni zer . Thisway, the parameters for a class can be found easily. However,
OpenNLP declares parameters centrally in Ui malt i | . Thus, the example aboveis correct,
although unconvential.

Note: Note that uimaFIT is unable to perform type-coercion on parameters if a descriptor
is created from a class that does not contain @onf i gur at i onPar anmet er annotations,
such asthe OpenNLP Tokeni zer . Such a descriptor does not contain any parameter
declarations! However, it is still possible to configure such a component using uimaFIT by
passing exactly the expected types as parameter values. Thus, we need use the get Name()
method to get the class name as a string, instead of simply passing the classitself. Also,
setting multi-valued parameter from alist or single value does not work here. Multi-values
parameters must be passed as an array of the required type. Only the default UIMA types
are possible: String, boolean, int, and float.

7.1.2. uimaFIT-aware components

uimaFI T provides the @xt er nal Resour ce annotation to inject external resources directly into
class member variables.

Table 7.1. @xt er nal Resour ce annotation

Parameter Description Default
key Resource key field name
api Used when the external field type

resource type is different from
the field type, e.g. when using
an External Resourcel_ocator

mandatory Whether avalue must be true
specified
/| Exanpl e annotator that uses the SharedModel. In the process() we only

/1 test if the nodel was properly initialized by uimaFIT
public static class Annotator
extends org.apache. ui ma.fit.conmponent. JCasAnnot at or _I| npl Base {

final static String MODEL_KEY = "Model ";
@xt er nal Resour ce(key = MODEL_KEY)
private SharedMbdel nodel;

public void process(JCas aJCas) throws Anal ysi SEngi neProcessException {
assert True(nodel . get Uri (). endsWth("gene_nodel _v02. bin"));
/1 Prints the instance IDto the console - this proves the sane
/'l instance of the SharedMvbdel is used in both Annotator instances.
System out . print| n(nmodel) ;

}

20

Externa Resources Apache uimaFIT™ Version 2.4.0

uimaFI T-aware components

}

Note, that it is no longer necessary to implement thei ni ti al i ze() method. uimaFIT takes care
of locating the external resource Model inthe UIMA context and assignsit to thefield nodel . If a
mandatory resource is not present in the context, an exception is thrown.

The resource injection mechanism isimplemented in the Ext er nal Resour cel niti al i zer class.
uimaFI T provides several base classesthat already comewith ani ni ti al i ze() method using the
initializer:

* CasAnnot at or _| npl Base

* CasCol | ecti onReader _I npl Base
* CasConsuner _I npl Base

* CasFl owControl | er_I npl Base

e CasMul tiplier_InplBase

e JCasAnnot at or _I npl Base

e JCasCol | ecti onReader _I npl Base
e JCasConsuner _I| npl Base

e JCasFl owControl | er _I npl Base
e JCasMul tiplier_InplBase

* Resource_I npl Base

When building a pipeline, external resources can be set of a component just like configuration
parameters. External resources and configuration parameters can be mixed and appear in any order
when creating a component description.

Note that in the following example, we create only one external resource description and use it
to configure two different analysis engines. Because we only use a single description, also only a
single instance of the external resource is created and shared between the two engines.

Ext er nal Resour ceDescri pti on ext Desc = creat eExt ernal Resour ceDescri ption(
Shar edMbdel . cl ass, new Fil e("sonenodel . bin"));

/1 Binding external resource to each Annotator individually
Anal ysi sengi neDescri ption aedl = creat eEngi neDescri pti on(
Annot at or. cl ass,
Annot at or . MODEL_KEY, ext Desc);

Anal ysi sEngi neDescri pti on aed2 = creat eEngi neDescri pti on(
Annot at or . cl ass,
Annot at or . MODEL_KEY, ext Desc);

/1l Check the external resource was injected

Anal ysi sengi neDescri ption aaed = creat eEngi neDescri pti on(aedl, aed2);
Anal ysi sengi ne ae = creat eEngi ne(aaed);

ae. process(ae. newdCas());

This example is given as a full JUnit-based example in the the uimaFI T-examples project.

Apache uimaFIT™ Version 2.4.0 Externa Resources 21

Resources extending Resource_ImplBase

7.1.3. Resources extending Resource_ImplBase

One kind of resources extend Resour ce_| npl Base. These are the easiest to handle, because
uimaFI T's version of Resour ce_| npl Base aready implements the necessary logic. Just be sureto
call super.initialize() whenoverridinginitialize().Alsomindthat external resources
arenot availableyet wheni ni ti al i ze() iscaled. For any initialization logic that requires
resources, override and implement af t er Resour cesl ni ti al i zed() . Other than that, injection
of external resources works as usual.

public static class Chai nabl eResource extends Resource_I| npl Base {
public final static String PARAM CHAI NED_RESOURCE = "chai nedResource";
@xt er nal Resour ce(key = PARAM CHAI NED_RESOURCE)
private Chai nabl eResource chai nedResource;

public void afterResourceslnitialized() {
/1 init logic that requires external resources
}
}

7.1.4. Resources implementing SharedResourceObject

The other kind of resources implement Shar edResour cehj ect . Sincethisis an interface,
uimaFI T cannot provide the initialization logic, so you have to implement a couple of thingsin the
resource:

* implement Ext er nal Resour ceAwar e

» declare aconfiguration parameter Ext er nal Resour ceFact or y. PARAM RESOURCE_NAME
and return itsvalue in get Resour ceNane()

e invoke ConfigurationParanmeterlinitializer.initialize() inthel oad()
method.

Again, mind that external resource not properly initialized until uimaFI T invokes
afterResourceslnitialized().

public class Test Shar edResour ceObj ect inpl enents
Shar edResour ce(hj ect, Ext ernal Resour ceAware {

@Conf i gur ati onPar anet er (name=Ext er nal Resour ceFact or y. PARAM RESOURCE_NANME)
private String resourceNang;

public final static String PARAM CHAI NED_RESOURCE = "chai nedResource";
@xt er nal Resour ce(key = PARAM CHAI NED_RESOURCE)
private Chai nabl eResource chai nedResource;

public String get ResourceNane() {
return resourceNane;

}

public void | oad(Dat aResour ce aDat a)
throws ResourcelnitializationException {

ConfigurationParaneterlnitializer.initialize(this, aData);
/1 rest of the init logic that does not require external resources

}

22 Externa Resources Apache uimaFIT™ Version 2.4.0

Note on injecting resources into resources

public void afterResourceslnitialized() {
/1 init logic that requires external resources
}

}

7.1.5. Note on injecting resources into resources

Nested resources are only initialized if they are used in a pipeline which contains at least one
component that calls Conf i gur ati onParaneterlnitializer.initialize().Any
component extending uimaFI T's component base classes qualifies. If you use nested resourcesin a
pipeline without any uimaFI T-aware components, you can just add uimaFI T's NoopAnnot at or to
the pipeline.

7.2. Resource locators

Normally, in UIMA an external resource needs to implement either Shar edResour cebj ect

or Resour ce. In order to inject arbitrary objects, uimaFI T has the concept of

Ext er nal Resour ceLocat or . When aresource implements this interface, not the resource itself
isinjected, but the method get Resour ce() iscaled on the resource and the result isinjected. The
following example illustrates how to inject an object from JNDI into a UIMA component:

cl ass MyAnal ysi sEngi ne2 extends JCasAnnot at or _| npl Base {
static final String RES DI CTI ONARY = "dictionary";
@xt er nal Resour ce(key = RES_DI CTI ONARY)
Di ctionary dictionary;

}

Anal ysi sengi neDescri pti on desc = createEngi neDescri ption(
MyAnal ysi sEngi ne2. cl ass);

bi ndResour ce(desc, MyAnal ysi sEngi ne2. RES_DI CTI ONARY,
Jndi Resour celLocat or. cl ass,
Jndi Resour ceLocat or . PARAM NAME, "di ctionari es/ german");

Apache uimaFIT™ Version 2.4.0 Externa Resources 23

Chapter 8. Type System Detection

UIMA requires that types that are used in the CAS are defined in XML files - so-caled type system
descriptions (TSD). Whenever a UIMA component is created, it must be associated with such a
type system. Whileit is possible to manually load the type system descriptors and pass them to
each UIMA component and to each created CAS, it is quite inconvenient to do so. For this reason,
uimaFI T supports the automatic detection of such filesin the classpath. Thusis becomes possible
for aUIMA component provider to have component's type automatically detected and thus the
components becomes immediately usable by adding it to the classpath.

8.1. Making types auto-detectable

The provider of atype system should create afile META- | NF/ or g. apache. ui ma. fit/

types. t xt inthe classpath. Thisfile should define the locations of the type system descriptions.
Assumethat atypeor g. apache. ui ma. fit.type. Token isspecifiedinthe TSD or g/ apache/
ui ma/ fit/type/ Token. xni , then the file should have the following contents:

cl asspat h*: org/ apache/ ui ma/ fit/typel/ Token. xm

Note: Mind that thefilet ypes. t xt ismust belocated in META- | NF/
org. apache. ui ma. fit whereor g. apache. ui ma. fit isthe name of a sub-directory
inside META- | NF. We are not using the Java package notation here!

To specify multiple TSDs, add additonal linesto thefile. If you have alarge number of TSDs,
you may prefer to add a pattern. Assume that we have alarge number of TSDs under or g/
apache/ ui ma/ fit/type, we can use the following pattern which recursively scans the package
org.apache.uimafit.type and all sub-packagesfor XML files and triesto load them as TSDs.

cl asspat h*: org/ apache/ uima/fit/type/ **/*. xm

Try to design your packages structure in away that TSDs and JCas wrapper classes generated from
them are separate from the rest of your code.

If it is not possible or inconvenient to add the “types.txt™ file, patterns can also be specified using
the system property or g. apache. ui ma. fit.type. i nport_pattern. Multiple patterns may be
specified separated by semicolon:

-Dorg. apache. uima.fit.type.inport_pattern=\
cl asspat h*: org/ apache/ uima/fit/type/ **/*. xm

Note: The\ inthe exampleis used as aline-continuation indicator. It and all spaces
following it should be ommitted.

8.2. Making index definitions and type priorities
auto-detectable

Auto-detection also works for index definitions and type priority definitions. For index
definitions, the respective file where to register the index definition XML filesis META-

I NF/ or g. apache. ui ma. fit/fsindexes.txt andfor typepriorities, itis META- | NF/
org. apache.uima.fit/typepriorities.txt.

Type System Detection 25

Using type auto-detection

8.3. Using type auto-detection
The auto-detected type system can be obtained from the TypeSyst enDescri pti onFact ory:

TypeSyst enDescription tsd =
TypeSyst enDescri pti onFact ory. creat eTypeSyst enDescri pti on()

Popular factory methods also support auto-detection:

Anal ysi sEngi ne ae = creat eEngi ne(MyEngi ne. cl ass) ;

8.4. Multiple META-INF/org.apache.uima.fit/types.txt
files

uimaFI T supports multiplet ypes. t xt filesin the classpath (e.g. in differnt JARS). The
t ypes. t xt filesarelocated via Spring using the classpath search pattern:

TYPE_MANI FEST_PATTERN = "cl asspat h*: META- | NF/ or g. apache. uima. fit/types.txt"

Thisresolvesto alist URLs pointingto ALL t ypes. t xt files. The resolved URLs are unique and
will point either to a specific point in the file system or into a specific JAR. These URLs can be
handled by the standard Java URL loading mechanism. Example:

jar:/path/to/ syntax-types.jar!/META-|1 NF/ org. apache. uinma.fit/types.txt
jar:/path/to/token-types.jar!/META-|I NF/ org. apache. ui ma.fit/types.txt

uimaFI T then reads all patters from all of these URL s and uses these to search the classpath again.
The patterns now resolveto alist of URLs pointing to the individual type system XML descriptors.
All of these URLs are collected in a set to avoid duplicate loading (for performance optimization

- not strictly necessary because the UIMA type system merger can handle compatible duplicates).
Then the descriptors are loaded into memory and merged using the standard UIMA type system
merger (CasCreationUtils. nergeTypeSyst ens()). Example:

jar:/path/to/syntax-types.jar!/desc/types/Syntax.xm
jar:/path/to/token-types.jar!/org/foobar/typesystens/ Tokens. xm

Voilg, theresult is atype system covering al types could be found in the classpath.
It is recommended

1. to put type system descriptors into packages resembling a namespace you "own" and to use
a package-scoped wildcard search

cl asspat h*: org/ apache/ uima/fit/type/**/*.xm "

2. or when putting descriptorsinto a "well-known" package like desc.type, that t ypes. t xt
file should explicitly list al type system descriptors instead of using awildcard search

cl asspat h*: desc/ t ype/ Token. xm
cl asspat h*: desc/ t ype/ Synt ax. xm

Method 1 should be preferred. Both methods can be mixed.

26 Type System Detection Apache uimaFIT™ Version 2.4.0

Performance note and caching

8.5. Performance note and caching

Currently uimaFI T evaluates the patterns for TSDs once and caches the locations,

but not the actual merged type system description. A rescan can be forced using

TypeSyst enDescri pti onFact ory. f or ceTypeDescri pt or sScan() . Thismay changein
future.

8.6. Potential problems

The mechanism works fine. However, there are specific issues with Javain general that one should
be aware of .

8.6.1. m2eclipse fails to copy descriptors to target/classes

There seems to be abug in some older versions of m2eclipse that causes resources not alwaysto be
copiedtot ar get/ cl asses. If UIMA complains about type definitions missing at runtime, try to
clean/rebuild your project and carefully check the m2eclipse console in the console view for error
messages that might cause m2eclipse to abort.

8.6.2. Class version conflicts

A praoblem can occur if you end up having multiple incompatible versions of the same type system
in the classpath. Thisis ageneral problem and not related to the auto-detection feature. It isthe
same as when you have incompatible version of a particular class (e.g. JCas wrapper or some
third-party-library) in the classpath. The behavior of the Java Classloader is undefined in that case.
The detection will do its best to try and load everything it can find, but the UIMA type system
merger may barf or you may end up with undefined behavior at runtime because one of the class
versionsisused at random.

8.6.3. Classes and resources in the default package

It is bad practice to place classes into the default (unnamed) package. In fact it is not possible to
import classes from the default package in another class. Similarly it isabad ideato put resources
at the root of the classpath. The Spring documentation on resources explains this in detail 1

For thisreason thet ypes. t xt residesin/ META- | NF/ or g. apache. ui na. fit anditissuggest
that type system descriptors reside either in a proper package like / or g/ f oobar / t ypesyst ens/
XXX. xm orin/desc/types/ XXX. xni .

1 http://tatic.springsource.org/spring/docs/3.0.x/reference/resources. html#resources-app-ctx-wil dcards-in-resource-paths

Apache uimaFIT™ Version 2.4.0 Type System Detection 27

http://static.springsource.org/spring/docs/3.0.x/reference/resources.html#resources-app-ctx-wildcards-in-resource-paths
http://static.springsource.org/spring/docs/3.0.x/reference/resources.html#resources-app-ctx-wildcards-in-resource-paths

Chapter 9. Building an executable JAR

Building an executable JAR including uimaFI T components typically requires extra care. Per
convention, uimaFI T expects certain information in specific locations on the classpath, e.g. the
types. t xt filethat controls the automatic type system detection mechanism must reside at
META- | NF/ or g. apache. ui ma. fit/types. txt .|t often occursthat aproject has severa

dependencies, each supplying its own configuration files at these standard |ocations. However, this
causes a problem with naive approaches to creating an executable fat-jar merging all dependencies
into asingle JAR file. Without extra care, the files supplied by the different dependencies overwrite

each other during the packaging process and only onefile winsin the end. As a consequence, the
types configured in the other files cannot be detected at runtime. Such a native approach is taken,
for example, by the Maven Assembly Plugin.

The Maven Shade Plugin provides a convenient alternative for the creation of executable fat-jars,

as it provides a mechanism to concatenate the configuration files from different dependencies while
creating the fat-jar. To use the Maven Shade Plugin with uimaFI T, use the following configuration

section in your POM file and make sure to change the mai nCl ass as required for your project:

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-shade- pl ugi n</artifactld>
<ver si on>2. 2</ ver si on>
<executi ons>
<executi on>
<phase>package</ phase>
<goal s><goal >shade</ goal ></ goal s>
<configurati on>
<t ransf or mer s>
<l-- Set the main class of the executable JAR -->
<t ransf or ner
i mpl ement at i on="or g. apache. maven. pl ugi ns. shade. \
resour ce. Mani f est Resour ceTr ansf or mer " >
<mai nCl ass>or g. apache. ui ma. fit. exanpl e. Mai n</ mai nCl ass>
</ transforner>
<l-- Merge the uimaFI T configuration files -->
<t r ansf or mer
i mpl enent ati on="or g. apache. maven. pl ugi ns. shade. \
r esour ce. Appendi ngTr ansf or mer " >
<r esour ce>\
IVETA- | NF/ or g. apache. ui ma. fit/fsindexes.txt\
</ resource>
</transforner>
<t r ansf or mer
i mpl enent ati on="or g. apache. maven. pl ugi ns. shade. \
r esour ce. Appendi ngTr ansf or mer " >
<resour ce>\
VETA- | NF/ or g. apache. ui ma. fit/types. txt\
</resource>
</ transforner>
<transf orner
i mpl enent ati on="or g. apache. maven. pl ugi ns. shade. \
resour ce. Appendi ngTr ansf or mer " >
<resour ce>\
VETA- | NF/ or g. apache. uima. fit/typepriorities.txt\
</ resource>
</ transforner>
</transforners>

Building an executable JAR

29

<I'-i-
Prevent huge shaded artifacts from bei ng depl oyed
to a Maven repository (renove if not desired)
-->
<out put Fi | e>\
${project.build. directory}/\
${artifactld}-${version}-standal one.jar\
</ out putFil e>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Note: Due to formatting constraints in the PDF version of this manual, the example above
uses\ toindicate aline continuation. Remove these and join the lines when you copy/
paste this example.

Note: Y ou might want to consider also merging additional files, such as LICENSE,
NOTICE, or DEPENDENCY files, configuration files for the Java Service Locator AP,
or files used by other frameworks that uses similar conventions for configuration file
locations. Check the documentation of the Maven Shade Plugin, as different kinds of
configuration files require different specialized transformers.

30

Building an executable JAR Apache uimaFIT™ Version 2.4.0

Chapter 10. uimaFIT Maven Plugin

uimaFI T dynamically generates UIMA component descriptions from annotations in the Java source
code. The uimaFIT Maven plugin provides the ability to automatically create such annotations

in already compiled classes and to automatically generate XML descriptors from the annotated
classes.

10.1.

enhance goal

The goal enhance allows automatically augmenting compiled classes with uimaFI T annotations.
Information like vendor, copyright, or version can be obtained from the Maven POM. Additionally,
descriptions for parameters and components can be generated from Javadoc comments. Existing
annotations are not overwritten unless forced.

<pl ugi n>

<gr oupl d>or g. apache. ui ma</ gr oupl d>

<artifact!ld>ui mafit-nmaven-plugin</artifactld>

<versi on>2. 4. 0</version> <!-- change to | atest version -->

<confi guration>
<l-- OPTIONAL -->
<l-- Override conponent description in generated descriptors. -->
<overri deConponent Descri pti on>f al se</ overri deConponent Descri pti on>

<I-- OPTIONAL -->
<I-- Override version in generated descriptors. -->
<overri deConponent Ver si on>f al se</ over ri deConponent Ver si on>

<I-- OPTIONAL -->
<l-- Override vendor in generated descriptors. -->
<overri deConponent Vendor >f al se</ overri deConponent Vendor >

<I-- OPTIONAL -->
<I-- Override copyright in generated descriptors. -->
<overri deConponent Copyri ght >f al se</ overri deConponent Copyri ght >

<l-- OPTIONAL -->
<l-- Version to use in generated descriptors. -->
<conponent Ver si on>${ pr oj ect . ver si on} </ conponent Ver si on>

<I-- OPTIONAL -->
<I-- Vendor to use in generated descriptors. -->
<conponent Vendor >Apache Foundati on</ conponent Vendor >

<l-- OPTIONAL -->
<!-- Copyright to use in generated descriptors. -->
<conponent Copyri ght >Apache Foundati on 2013</ conponent Copyri ght >

<I-- OPTIONAL -->
<!-- Source file encoding. -->
<encodi ng>${ proj ect . bui | d. sour ceEncodi ng} </ encodi ng>

<l-- OPTIONAL -->
<I-- Cenerate a report of mssing neta data in

$proj ect. buil d.directory/ui mafit-m ssing-nmeta-data-report.txt -->
<gener at eM ssi ngMet aDat aReport >t r ue</ gener at eM ssi nghet aDat aReport >

<I-- OPTIONAL -->
<I-- Fail on mssing neta data. This setting has no effect unless

uimaFIT Maven Plugin 31

generate god

gener at eM ssi ngMet aDat aReport is enabled. -->
<f ai | OnM ssi ngMet aDat a>f al se</f ai | OnM ssi ngMet aDat a>

<I-- OPTIONAL -->
<l-- Constant nane prefixes used for paraneters and external resources,
e.g. "PARAM". -->
<par anet er NanmeConst ant Pr ef i xes>
<pr ef i x>PARAM <pr ef i x/ >
</ par anet er NaneConst ant Pr ef i xes>

<l-- OPTIONAL -->
<I-- Fail on mssing nmeta data. This setting has no effect unless
gener at eM ssi nghet aDat aReport is enabled. -->
<ext er nal Resour ceNaneConst ant Pref i xes>
<prefi Xx>KEY_<prefi x/>
<prefi x>RES_<prefix/>
</ ext er nal Resour ceNaneConst ant Pr ef i xes>
</ confi guration>
<executi ons>
<executi on>
<i d>defaul t</i d>
<phase>pr ocess- cl asses</ phase>
<goal s>
<goal >enhance</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

When generating descriptions for configuration parameters or external resources, the plugin
supports a common practice of placing the Javadoc on a constant field instead of the parameter or
external resource field. Per default, parameter name constants must be prefixed with PARAM_ and
external resource key constants must be prefixed with RES_ or KEY_.

/**
* Enabl e or disable nmy feature.
*/
public static final String PARAM ENABLE FEATURE = "enabl eFeature";
@Confi gur ati onPar anet er (name=PARAM ENABLE FEATURE)
private bool ean enabl eFeat ure;

/**

* My external resource

*/

public static final String RES MY_RESOURCE = "resource";
@xt er nal Resour ce(key=RES_MY_RESOURCE)

private MyResource resource

By enabling gener at eM ssi ngMet aDat aRepor t , the build can be made to fail if meta data such
as parameter descriptions are missing. A report about the missing dataiis generated in ui mafi t -
m ssi ng- met a- dat a- report. t xt inthe project build directory.

10.2.

generate goal
The generate goal generates XML component descriptors for UIMA components.

<pl ugi n>
<gr oupl d>or g. apache. ui ma</ gr oupl d>
<artifact!ld>ui mafit-nmaven-plugin</artifactld>

32

uimaFIT Maven Plugin Apache uimaFIT™ Version 2.4.0

generate god

<versi on>2.4.0</version> <!-- change to | atest version -->
<confi gurati on>
<I-- OPTIONAL -->
<I-- Path where the generated resources are witten. -->
<out put Di rect ory>
${proj ect.buil d.directory}/generat ed-sources/ ui mafit
</ out put Di rect ory>

<I-- OPTIONAL -->
<I-- Skip generation of META-1NF/ org. apache. ui ma.fit/conponents.txt -->
<ski pConponent sMani f est >f al se</ ski pConponent sMani f est >

<l-- OPTIONAL -->
<!-- Source file encoding. -->
<encodi ng>${ pr oj ect . bui | d. sour ceEncodi ng} </ encodi ng>
</ confi guration>
<execut i ons>
<executi on>
<i d>def aul t </i d>
<phase>pr ocess- cl asses</ phase>
<goal s>
<goal >gener at e</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

In addition to the XML descriptors, amanifest fileis written to META- | NF/
org. apache. ui ma. fit/conponents. t xt . Thisfile can be used to conveniently locate the
XML descriptors, which are written in the packages next to the classes they describe.

cl asspat h*: or g/ apache/ ui ma/ fit/ exanpl es/ Exanpl eConponent . xmi

It is recommended to use both, the enhance and the generate goal. Both goals should be specified in
the same execution, first enhance, then generate:

<executi on>
<i d>def aul t </i d>
<phase>pr ocess- cl asses</ phase>
<goal s>
<goal >enhance</ goal >
<goal >gener at e</ goal >
</ goal s>
</ executi on>

Apache uimaFIT™ Version 2.4.0 uimaFIT Maven Plugin 33

Chapter 11. Migration Guide

This section provides helpful information on incompatible changes between versions.

11.1.

Version 2.3.0to 2.4.0

Version requirements. Dependson UIMA 2.10.2, Spring Framework 3.2.16 and Java 7.

Mind the updated version requirements. There should be no other potentially problematic changes
in this upgrade.

11.2.

Version 2.2.0to 2.3.0

CaslOULtil deprecated. The functionality of the uimaFI T CaslOULtil class has been superseded
by the core UIMA class Casl OUtils added in UIMA 2.9.0. The method signatures in the new
class are not the same, but provide more functionality. Casl OUtil has been deprecated and
documentation has been added which of the Casl OUtils methods should be used instead.

Version requirements. Depends on UIMA 2.9.1, Spring Framework 3.2.16 and Java 7.

Mind the updated version requirements. There should be no other potentially problematic changes
in this upgrade.

11.3.

Version 2.1.0to 2.2.0

Version requirements. Dependson UIMA 2.8.1, Spring Framework 3.2.16 and Java 7.

Mind the updated version requirements. There should be no other potentially problematic changes
in this upgrade.

11.4.

Version 2.0.0to 2.1.0

Version requirements. Depends on UIMA 2.6.0 and Java 6.

AnnotationFactory.createAnnotation(). No longer throws Ul MAExcpt i on. If this exception
was cought, some IDEs may complain here after upgrading to uimaFIT 2.1.0.

11.5.

Version 1.4.0to 2.0.0

Version requirements. Dependson UIMA 2.4.2.

Backwards compatibility. Compatibility with legacy annotation is provided by the Legacy
support module.

Change of Maven groupld and artifactld. The Maven group ID has changed from
org. ui mafit toorg. apache. ui na.

The artifact ID of the main uimaFI T artifact has been changed from ui maf it toui mafit-core.

Change of packagenames. The base package has been renamed from or g. ui maf i t to
org. apache. ui ma. fit.A global search/replace on Javafiles with for lines starting with i npor t
org. ui mafit andreplacing that withi nport org. apache. ui na. fit should work.

Migration Guide 35

Legacy support module

@ConfigurationParameter. The default value for the mandatory attribute

now ist r ue. The default name of configuration parametersis now the name

of the annotated field only. The classname is no longer prefixed. The method

Confi gur ati onPar anet er Fact ory. cr eat eConf i gur ati onPar anet er Nane() that was
used to generate the prefixed name has been removed.

Type detection: META-INF/org.uimafit folder. The META- | NF/ or g. ui maf i t was renamed
to META- | NF/ or g. apache. uima. fit.

JCasUtil. Thedeprecated JCasUt i | .iterate() methods have been removed.
JCasUtil . sel ect () should be used instead.

AnalysisEngineFactory. All cr eat eAggr egat eXXX and cr eat ePri mi t i veXXX methods
have been renamed to cr eat eEngi neXXX. The old names are deprecated and will be removed in
future versions.

All cr eat eAnal ysi sEngi neXXX methods have been renamed to cr eat eEngi neXXX. Theold
names are deprecated and will be removed in future versions.

CollectionReaderFactory. All creat eDescri pt i onXXX methods have been renamed to
cr eat eReader Descri pt i onXXX. The old names are deprecated and will be removed in future
versions.

All cr eat eCol | ecti onReader XXX methods have been renamed to cr eat eReader XXX. The old
names are deprecated and will be removed in future versions.

JCaslterable. JCasl t er abl e now only accepts reader and engine descriptions (no instances)
and no longer implementsthel t er at or interface. Instead, new JCasl t er at or has been added,
which replaces JCasl t er abl e in that respect.

CasDumpWriter. org. ui mafit.conponent.xwiter. CASDUunpW it er hasbeen renamed
toorg. apache. ui ma. fit.conponent. CasDumpWiter.

CpePipeline. CpePi pel i ne has been moved to a separate module with the artifact 1D
ui maf it - cpe to reduce the dependencies incurred by the main uimaFIT artifact.

XWriter removed. TheXWi t er and associated file namers have been removed as they were
much more complex then acutally needed. As an aternative, Casl OUt i | has been introduced
providing several convenience methods to read/write JCas/CAS data.

JCasFactory. Methods only loading JCas data have been removed from JCasFact ory. The
new methodsin Casl QUt i | can be used instead.

11.6.

Legacy support module

The compatibility layer should allow you to migrate to uimaFI T 2.4.0 without breaking anything.

Y ou should then be able to gradually change the codebase to be compatible with uimaFIT 2.4.0. As
far as my tests go, uimaFI T 1.x and 2.4.0 can coexist peacefully on the classpath (and indeed both
need to be on the classpath in order to use the legacy support module).

To enable the legacy support, make sure that you have a dependency on uimaFIT 1.x and then just
add a dependency on the legacy module;

<dependency>
<gr oupl d>or g. ui mafit </ groupl d>

36

Migration Guide Apache uimaFIT™ Version 2.4.0

Legacy support module

<artifactld>uimafit</artifactld>
<versi on>1. 4. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. ui ma</ gr oupl d>
<artifactld>uimafit-|egacy-support</artifactld>
<ver si on>2. 4. 0</ ver si on>

</ dependency>

uimaFI T 2.4.0 automatically detects the presence of the legacy module and usesit - no additiona
configuration is necessary.

The following bash script may help to partially automatize the source code migration process.
Please observe that it does not cover all of the necessary changes!

Note: The script recursively changes all files under the current working directory! Make
sure you arein the right directory before running it! Use the script at your own risk!

#!/ bi n/ sh

BHUBHHH B HASHH TR T AR AR AR R R R T AR
MAKE SURE TO BACKUP YOUR FI LES FI RST!

SCRI PT RECURSI VELY CHANGES ALL JAVA FI LES!
USE AT YOUR OMN RI SK!
BHAABHHBHHHBHHRRHHBHHARHHRHHABHHRHHHRBHH RS

Change of package nanes

find . -name '*.java' -print |

xargs perl -p -i -e '"s/org.uimafit/org. apache.uinma.fit/g'

find . -name '*.java' -print |

xargs perl -p -i -e 's/org.uimafit.conmponent.xwiter.CASDunpWiter/\

org. apache. uima. fit.conponent. CasDunpWiter/g'

Anal ysi sengi neFact ory

find . -name '*.java' -print |

xargs perl -p -i -e 's/createAggregate/createEngine/g'

find . -name '*.java' -print |

xargs perl -p -i -e 's/createPrinmitive/createEngine/g'

find . -name '*.java' -print |

xargs perl -p -i -e 's/createAnal ysi sengi ne/ creat eEngi ne/ g'
Readers

find . -name '*.java' -print |

xargs perl -p -i -e 's/createDescription/createReaderDescription/g'
find . -name '*.java' -print |

xargs perl -p -i -e 's/createCol |l ecti onReader/creat eReader/ g’

Apache uimaFIT™ Version 2.4.0 Migration Guide

37

	Apache uimaFIT™ Guide and Reference
	Table of Contents
	Chapter 1. Introduction
	1.1. Simplify Component Implementation
	1.2. Simplify Component Instantiation
	1.2.1. From a class
	1.2.2. From an XML descriptor

	1.3. Is this cheating?
	1.4. Conclusion

	Chapter 2. Getting Started
	2.1. Adding uimaFIT to your project
	2.1.1. Maven users
	2.1.2. Non-Maven users

	2.2. A simple analysis engine implementation
	2.3. Running the analysis engine
	2.4. Generate a descriptor file

	Chapter 3. Pipelines
	Chapter 4. Running Experiments
	Chapter 5. CAS Utilities
	5.1. Access methods

	Chapter 6. Configuration Parameters
	Chapter 7. External Resources
	7.1. Resource injection
	7.1.1. Regular UIMA components
	7.1.2. uimaFIT-aware components
	7.1.3. Resources extending Resource_ImplBase
	7.1.4. Resources implementing SharedResourceObject
	7.1.5. Note on injecting resources into resources

	7.2. Resource locators

	Chapter 8. Type System Detection
	8.1. Making types auto-detectable
	8.2. Making index definitions and type priorities auto-detectable
	8.3. Using type auto-detection
	8.4. Multiple META-INF/org.apache.uima.fit/types.txt files
	8.5. Performance note and caching
	8.6. Potential problems
	8.6.1. m2eclipse fails to copy descriptors to target/classes
	8.6.2. Class version conflicts
	8.6.3. Classes and resources in the default package

	Chapter 9. Building an executable JAR
	Chapter 10. uimaFIT Maven Plugin
	10.1. enhance goal
	10.2. generate goal

	Chapter 11. Migration Guide
	11.1. Version 2.3.0 to 2.4.0
	11.2. Version 2.2.0 to 2.3.0
	11.3. Version 2.1.0 to 2.2.0
	11.4. Version 2.0.0 to 2.1.0
	11.5. Version 1.4.0 to 2.0.0
	11.6. Legacy support module

