Tagger Annotator Documentation

Written and maintained by the Apache UIMA Development Community

Version 2.3.1

Copyright © 2006, 2011 The Apache Software Foundation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2011

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

g 0o [0t i) o PSPPI Y
I = 1= o 0 =P 1
2. PrOCESSING OVEIVIEWW ...etuttttitititttiitttitteteteaeeeseeeeeeeaebeee e eebe b ebe e s s e e beee b s b et s et bebsbbbbbebebbnee 3
R N 0o = (o B L=] oo TSP 5

3.1, Configuration ParamELErScooiiieiiiiiee e e e e et e e e e e e e eeare e e e e e e eeee 5

A O oo 1 1) 1= 6
A, FUNCHONEBIITY TESE ..ttt e ettt e e et e e e et e e e e e e e eetbba e e e eeaeas 7
5. Overview of the Tagger PACKAgEooeevvieeeiiie e e e e e e e e e eeanenes 9
6. Training OWN MOGEISooi e e e e e e e e e e e e e et e e e eaeeenes 11
T BVEIUBLION ..o 13
N I 1o YA = o 1 0o U PPRRR 15
L1017 SR 17
271 01T = o TR 19

Tagger Annotator Documentation i

Introduction

Tagger Annotator is an Apache UIMA statistical analysis engine that annotates tokens with
corresponding grammatical types (parts of speech, or just POS). The tagger is a standard hidden
Markov model (HMM) tagger.

Introduction

Chapter 1. Prerequisites

The UIMA HMM Tagger annotator assumes that sentences and tokens have already been annotated
in the CAS with Sentence and Token annotations respectively (see e.g. Whi t espace Tokeni zer
Annot at or). Further, the tagger requires a parameter file which specifies a number of necessary
parameters for tagging procedure (see Section 3.1, “ Configuration Parameters’ [5]). Two

trained models for English and German are included in the package (in ther esour ces folder).
Other models can be trained outside of the UIMA framework (see Chapter 6, Training Own
Models[11]).

Prerequisites 1

Chapter 2. Processing Overview

The agorithm iterates over sentences and tokens in turn to accumulate a list of words. These are
then sent to a processing engine of HMM tagger. For each Token , the posTag field is updated
with the corresponding part of speech (e.g. posTag = " NN' where NN stands for common noun).

Processing Overview

Chapter 3. Annotator Descriptor

Two descriptors are employed to configure tagger's functionality:

* Hmiragger. xm - isaprimitive analysis engine descriptor, which defines the tagger
basic functionality and can be combined in an aggregate analysis engine with an arbitrary
tokenizer. This descriptor cannot be used on itself as the tagger alone does not perfom
tokenization.

* Hmiragger TAE. xm - isan aggregate analysis engine whose only function is to combine
UIMA Wi t espace Tokeni zer Annot at or with HW Tagger Annot ator andis
thereby a"ready to use" tagging descriptor.

3.1. Configuration Parameters

The HMM tagger annotator (Hmiragger . xni) requires the following configuration parameters:

* NGRAM SI ZE - this parameter is an Integer, defining whether a bi- or trigram model should
be used for tagging (default is N=3).

<confi gurati onPar anet er s>
<confi gurati onPar anet er >
<nanme>NGRAM S| ZE</ nane>
<t ype>| nt eger </ t ype>
<mul ti Val ued>f al se</ mul ti Val ued>
<mandat or y>t r ue</ mandat or y>
</ confi gur ati onPar anet er >
</ confi gurati onPar anet er s>
<confi gurati onPar anmet er Setti ngs>
<naneVal uePai r >
<nanme>NGRAM S| ZE</ nane>
<val ue>
<i nt eger >3</ i nt eger >
</val ue>
</ naneVal uePai r >
</ confi gurati onParaneter Settings>

* Model Fi | e - binary file containing the statistical model which should be used for tagging is
defined as an external resource

<ext er nal Resour ces>
<ext er nal Resour ce>
<nane>Model Fi | e</ nane>
<descri pti on>HW Tagger nodel file</description>
<fil eResour ceSpecifier>
<fileUrl>file:german/ TuebaMdel . dat</fileUrl >
</fil eResourceSpecifier>
<i npl ement at i onName>
or g. apache. ui ma. exanpl es. t agger . Model Resour ce
</i npl ement at i onNane>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

Thus, one can easily use adifferent model by changing thefil eUr! line: fil e: ger man/
TuebaModel . dat . (NB. New models must be located in ther esour ces folder.) After these
two parameters have been set, the tagger is ready to use.

Annotator Descriptor 5

Capabilities

3.2. Capabilities

Asthe tagger inherits tokenization indexes from the CAS, ui ma. Sent enceAnnot at i on and
ui ma. TokenAnnot at i on with their begi n and end features respectively have to be defined
asinput capabilitiesin the HMM Tagger annotator descriptor. Token receives also an additional
posTag feature as an output capability.

<capabilities>
<capability>
<i nput s>
<t ype>or g. apache. ui na. TokenAnnot at i on</ t ype>
<type al | Annot at or Feat ures="t rue" >
or g. apache. ui ma. Sent enceAnnot at i on
</type>
<f eat ur e>or g. apache. ui ma. TokenAnnot at i on: end</ f eat ur e>
<f eat ur e>or g. apache. ui ma. TokenAnnot at i on: begi n</ f eat ur e>
</i nput s>
<out put s>
<t ype>or g. apache. ui na. TokenAnnot at i on</ t ype>
<f eat ur e>or g. apache. ui ma. TokenAnnot at i on: posTag</ f eat ur e>
<f eat ur e>or g. apache. ui ma. TokenAnnot ati on: end</ f eat ur e>
<f eat ur e>or g. apache. ui ma. TokenAnnot at i on: begi n</ f eat ur e>
</ out put s>
</ capability>
</capabilities>

6 Annotator Descriptor UIMA Version 2.3.1

Chapter 4. Functionality Test

TheTagger Test isaJUnit test file (available in thet est folder), which provides an opportunity
to test provided models for English and German, as well as the basic functionality of the tagger. In
order to check whether the tagger's configuration is correct, just run thisfile as JUnit Test and you
should get the following output:

Tesi ng German Model . ..

The used nodel is:resources/german/ TuebaModel . dat
61646 di stinct words in the nodel

Number of part-of-speech tags used: 54

These are: [$(, $,, $., ADIA, ADID, ADV, APPQO
APPR, APPRART, APZR, ART, CARD, ...]

Testing German trigramtagger..

[Jerry, liebt, Wansley, .]

expected: [NE, WFIN, NE $.]

tagger output: [NE, WFIN, NE, $.]

Very Good!

Tesing English Mdel...

The used nodel is:resources/english/BrownMdel . dat
56012 distinct words in the nodel

Nurmber of part-of-speech tags used: 473

These are: [', "', (,), *, ,, --, ., :, °, abl,
abn, abx, ap, ap$, at, be, bed, ...]

Testing English trigramtagger...

[Jerry, loves, Wansley, .]

expected: [np, vbz, np, .]

tagger output: [np, vbz, np, .]

Very Good!

Functionality Test

Chapter 5. Overview of the Tagger package

The package or g. apache. ui ma. exanpl es. t agger contains:
* twointerfaces:
1. | Model Resour ce - model resource interface

2. Tagger - general tagger interface, in case one would want to integrate further tagger
types.

* three classes:

1. HWIragger - hidden Markov model tagger for UIMA, that isusing Viterbi algorithm
to compute the most probabl e part-of-speech sequence for a given list of tokens.

2. Vi terbi - implementation of the Viterbi Algorithm. This class makes up the core of
the tagger.

3. Mbdel Resour ce. j ava - implementation of the | Model Resour ce

Overview of the Tagger package

Chapter 6. Training Own Models

Though we decide not to include training directly into UIMA framework, one can easily train other
models for different pre-annotated corpora outside of the UIMA using Model Gener at i on class,
availablein the subpackage or g. apache. ui ma. exanpl es. t agger . t r ai nAndTest . This
subpackage includes some further files needed for training of own models:

* Mappi ngl nt er f ace - defines mapping for atagset. For example, one may wish to
map a more detailed tagset to aless distinctive one (i.e. tell a program to tag all verbs as
just VERB instead of differentiating betweenverb infinitive,verb inperative,
etc. Two sample implementations for Mappi ngl nt er f ace are included, namely
TagMappi ngBr own (mapping reducing Brown corpus tagset from more than 400 tags to 93)
and Gr obMappi ngTueba(mapping German STTS tagset from 54 tags to basic 11 categories
plus special symbols and punctuation)

* Model Gener ati on - trains an N-gram model for the tagger, iterating over aList of Tokens.
Writes the resulting model to a binary file. At the moment, only bi-and trigram models are
supported. Further N-grams can be easily integrated. Model Gener at i on is not concerned
with the fact, whether the training corpusis given as asinglefile or as adirectory containing
anumber of files, asthisisa CORPUS_READER implementation issue. Two supplied readers
include both areader for a corpus as asingle file (TT_For nat Reader code>) or asa
directory (Br ownReader code>)

* Interface Cor pusReader - should be used to implement corpus readers for own corpora;
the objective of the reader is to take charge of the preprocessing and transform tokenized
units (usually words) into aList of Token objects. Two sample implementations of
Cor pusReader areincluded:

1. BrownReader - for the Brown corpus from the nltk distribution
(nltk.sourceforge.net)

2. TT_For mat Reader - for the corporain TreeTagger format, i.e. one word per line
with tags separated from the words by tabs.

To train anew model, one should adjust a number of parametersinthe"t agger . properti es"”
file, which isin Java properties file format (see tagger.propertiesfile [11]). After the
parameters are set, you just need to run Model Gener ati on. j ava

#H#H###H## This is the default tagger.properties file
#HH##H## This file is used for training and testing only,
#i###H### The configuration for tagging is directly
#H###H## tuned in the descriptor "HwmTagger. xm "

HHHHHHHHHHHH A BOTH FOR TRAI NI NG AND EVALUATI ON ##t#H#H#HEH#HE
#it###### THESE ARE THE DEFAULT MODEL FI LES FOR GERVAN AND ENGLI SH
#H#H##H## You can either uncoment one of them if you want to repl ace

#i###H### gi ven nodel s with your own one,

#MODEL_FI LE
#MODEL_FI LE

= resour ces/ ger man/ TuebaMbdel . dat

= resour ces/ engl i sh/ BrownModel . dat
#i#HH### or specify a conpletely different nane
MODEL_FI LE =

Training Own Models 11

#i#H#H### | f mapping of tags is desired, uncomment the follow ng
#DO_MAPPI NG = true

#H####H## EXAMPLES OF MAPPI NG CLASSES

Basic mapping for the Brown corpus (nltk distribution) tagset:
to get 93 tags out of 473

#MAPPI NG = or g. apache. ui ma. exanpl es. t agger . TagMappi ngBr own

Basic mapping for STTS tagset: from 54 tags onto the basic

ca. 15 classes plus punctuation

#MAPPI NG = or g. apache. ui ma. exanpl es. t agger . G obMappi ngTueba

|f you inplenent your own napping, you should specify here in
the sanme manner as above a java-path to the class
MAPPI NG =

#it##### FI LE CONTAI NI NG TRAI NI NG CORPUS:

#H##H###H#H# can be in specified either as an absolute or as a relative path
#H#H##H# e.g. FILE = ../../tueba_tigerFormat.txt or FILE = C:./Datal/tueba.txt
FILE =

#i#HH### | f corpus is in a different format and
#H###H## cannot be read with the provi ded READERS,
#i###### you shoul d specify here a java-path to the
#H#H###H#H# cl ass (s. exanpl es bel ow)

#CORPUS_READER=0r g. apache. ui ma. exanpl es. t agger . t rai nAndTest . TT_For mat Reader
#CORPUS_READER=0r g. apache. ui ma. exanpl es. t agger . t r ai nAndTest . Br ownReader
CORPUS_READER =

BHAARHHHHHABHHRHH ONLY FOR EVALUATI ON ####H##HHHHHHHHHHHHHHHHH

#it###H#H#H## GOLD STANDARD CORPUS FI LE:

#H#H##H#H## can be specified as an absolute or as a relative path
e.g. GOLD _STANDARD = ../../tueba_tigerFormat.txt or

GOLD_STANDARD = C:/Dat a/tueba. t xt

GOLD_STANDARD =

#i###H#H#H Here we specify whether one intends to test a bi- or a
#i#HH#### trigram nodel (default is a trigram nodel)
N=3

12

Training Own Models UIMA Version 2.3.1

Chapter 7. Evaluation

To evauate performance if a"gold standard” corpus is available, one can use the following
provided file:

» Tagger Eval uati on. j ava - can be used to evaluate the tagger and/or new models on a
manually annotated corpus.

HWMTagger was evauated for English and German. For English, it was trained on 80% of the
Brown corpus (180,000 tokens) and tested on the rest unseen 20%. The achieved accuracy was
about 96%, test corpus contained 4.5% of unknown tokens.

For German, it achieves between 95% and 96% accuracy when trained and tested on the same type
of corpus, i.e. with 80% of corpus used for training and 20% for testing. The accuracy goes a bit
down when tagging is performed for different types of corporathan the training one, mostly due to
the growing number of unknown words.

Evaluation 13

Appendix A. Theory Behind

This chapter isjust a sketch of the statistical model undelying the tagger. Hidden Markov Models
(HMMs) are the mainstay of the applications employing statistical modeling in any form, like
speech recognition and production systems, signal processing, part of speech tagging. A Hidden
Markov Model is a probabilistic function of a Markov process. A Markov process is a process that
fulfills Markov assumptions. Markov assumptions are:

* limted horizon - Markov processes are states without memory, except for condition
of the current state. Though we usually consider sequences of variables that are not
independent of each other, it often suffices to know the value of the current situation without
going deep into the past happenings. As[ManningSchuetze99] put it, we do not really
need to know, how many books were in the library last week or last year in order to predict
how many books there will be tomorrow. It is often enough to know the current situation.
Thereby, future states in the Markov process are independent of the past, they only depend
onthe present. Let X =(X 1, ..., X 1) beasequence of random variables taking the values
from the finite state space S=(s1,....,Sn) , thenalimited horizon property could be
formalized by:

PXt+1 =8k X 1, ..., Xt) =PX ts1 =5k [X t)
e tine invariance

The probabilities do not change over time, i.e. if we know that the probability of observing
arainbow after therain is equal to 90\%, we know that it should be true for today as well as
for tomorrow.

If X conforms to these two properties, then it is said to be aMarkov chain. One can describe a
Markov chain by atransition matrix:

A=a;j=PX1=8j[X=sj)

-witha;; >=0 (for al i,j) and the sum of all transition probabilities from statei (a;;) should be
equal to 1 (forall i)

Markov models can be used whenever one needs to model the probability of alinear sequence of
variables. One distinguishes Visible Markov Models (VMM) vs. Hidden Markov Models. The
difference is that when we work with "visible" events, we can directly estimate the corresponding
probabilities (which is the case if training corpusis available to train own models for HMM
taggers). Finding a sequence of part of speech tags (i.e. Viterbi part of the tagger) in contrast isa
hidden Markov model as the states (tags) are not directly observable.

The goal of HMM - based tagger isto find part of speech tags (= hidden states) that generate a
seguence of words (= observable states). Most of the known implementations of POS taggers are
viewing text as being produced by a hidden Markov model, so that tagging can be regarded as a
Markov process deciding which states the system went through to generate a given text.

General Form of HMM
A HMM isafivetuple: (S, O, #, A, B)
where;

* S-the set of states (here: parts of speech)

Theory Behind 15

K - the set of observations (here: words)
» # -initial state probabilities

* A- dtate transitions probabilities

* B - symbol emissions probabilities

Further, X ; (statesequence)and O ; (output sequence) are given. Tagging procedureis then
the following:

1.t :=1
2. Start in state s j with probability # ; (i.e., X1 =1)
3. forever do:
* Muve froms j to s j with probability a i j (i.e. X+ =7])
* Emit observation synmbol o ¢ = k with probability b j j «
et =T+l
4. end
Despite their limitations, HMM-s are one of the most successful techniquesin natural language

processing and are widely used, especially in sequence tagging applications. The best statistical
taggers all perform at about the same level of accuracy.

16

Theory Behind UIMA Version 2.3.1

Glossary

HMM

Hidden Markov
Model

POS

Part of Speech

Glossary

17

Bibliography

[ManningSchuetze99] Christopher Manning and Hinrich Schuetze. Foundations of Satistical Natural
Language Processing . Copyright © 1999. MIT Press.

Bibliography

19

	Tagger Annotator Documentation
	Table of Contents
	Introduction
	Chapter 1. Prerequisites
	Chapter 2. Processing Overview
	Chapter 3. Annotator Descriptor
	3.1. Configuration Parameters
	3.2. Capabilities

	Chapter 4. Functionality Test
	Chapter 5. Overview of the Tagger package
	Chapter 6. Training Own Models
	Chapter 7. Evaluation
	Appendix A. Theory Behind
	Glossary
	Bibliography

