Apache UIMA Regular Expression
Annotator Documentation

Written and maintained by the Apache UIMA Development Community

Version 2.3.1

Copyright © 2006, 2011 The Apache Software Foundation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2011

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

(o 11 o (o o P Y
1. ProCesSiNG OVEIVIEWiieeeiiieeiiiiis s e e e e e e eeeites s e e e e e e e e eetas s s s e e e eeeeetana s e eeeeaeeeasannneeeeneeennes 1
2. Concepts Configuration FIle ... 3
2.1, RUIESEL dEfiNITION ...ccvveiiiiii e e e e e e e e e e et e aaans 3

A @0 0'= o e = {01 e o T 3

2.3. REQEX VAADIES ... 5

2.4, RUIE DEFINITION L.uiiiiiiii e e e e e e e et e e e e et eeeeataaeeeeaes 6
241, MatCh TYPE FEr oo 7

2.4.2. Update Match Type Annotations With Additional Features.............cccceeeeee... 7

24.3. RUIE EXCEPLION ..o 8

2.5, ANNOLALTION CrEALIOMN ... 9
2.5.1. Annotation BOUNGAIIESccoeiiiiiiiiiiii e 10

2.5.2. Annotation Validationccoooeeiiiiiiiiiiii e 10

2.5.3. ANNOLALioN FEALUIESciieii e e e e e eaaas 11

I AN 0o 1= (o I 1= o] o] (o RS 15
3.1. Configuration ParaMeELErSuuuuuuuuuriiiiiiieiiiiieieieieiaebbbbebebebaeeeebebeeeeeeeeeeeeeeee 15

3.2, CaPabIlITIES ... 15

A. ConCept File SCNEMAcoiieeiieie e e e e e e e e e e e eeeeeenes 17
B. Validation INEErfACEuuuiiiiiiiiiiiiiiiii bbb 21
C. NOrmalization TNEEITACE cveeiei e e s 23

Apache UIMA Regular Expression
Annotator Documentation i

Introduction

The Regular Expression Annotator (RegexAnnotator) is an Apache UIMA analysis engine that
detects entities such as email addresses, URL s, phone numbers, zip codes or any other entity that
can be specified using aregular expression. For each entity that is detected an own annotation

can be created or an already existing annotation can be updated with new features. To detect also
more difficult and complex entities, the annotator provides some advanced filter capabilitiesand a

rule definition syntax that can combine rules to a concept with a confidence value for each of the
concept's rules.

Introduction Y

Chapter 1. Processing Overview

To detect any kind of entity the RegexAnnotator must be configured using an external XML file.
We call thisfile "concept file" since it contains the regular expressions and concepts that the
annotator use during its processing to detect entities. In addition to the rules the concept file also
contains the "entity result processing” that is done if an entity was detected. The "entity result
processing” can either be the creation of new annotations or an update of an existing annotation
with additional features. The types and features that are used to create new annotations have to be
availablein the UIMA type system.

After the concept fileis created, the annotator XML descriptor have to be updated with the
capabilities and maybe with the type system information from the concept file. The capability
update is necessary that the UIMA framework can call the annotator also in complex annotator
flowsif the annotator is assembled with othersto an analysis bundle. The UIMA type system
update is only necessary if the used types are not available in the UIMA type system definition.

With the completion of the descriptor updates, the RegexAnnotator is ready to use. When starting
the annotator, during the initialization the annotator reads the concept file and checks if all rules
and concepts are valid and if all annotations types are defined in the UIMA type system. For

each document that is processed the rules and concepts are executed in exactly the same order as
defined in the concept file. The results and annotations created for a preceding rule are used by the
following one since they are stored in the CAS.

Processing Overview

Chapter 2. Concepts Configuration File

The RegexAnnotator can be configured using two levels of complexity.

The RuleSet definition is the easier way to define rules. Such a definition consists of aregular
expression pattern and of annotations that should be created if the rule match an entity.

The Concept definition is the more complex way to define rules. Such a definition can consists of
more than one regular expression rule that can be combined together and of a set of annotations that
should be created if one of the rules has matched an entity.

The syntax for both definitionsis the same, so you don't need to learn two configuration
possihilities. The RuleSet definition is just available to have an easier and faster way to configure
the annotator for simple tasks. If you have a RuleSet definition it is aso possible to extend it with
more and more features so that it becomes areal Concept definition.

2.1. RuleSet definition

The syntax of asimple RuleSet definition to detect email addresses is shown in the listing below:

<concept Set xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : noNamespaceSchenmaLocat i on="concept . xsd" >

<concept nane="enui | AddressDet ecti on" >
<rul es>
<rul e regEx="([a-zA-Z0-9! #$% +' / =?"_-"{]|}~.\x26] +) @
([a-zA-Z0-9. _-]1+[a-zA-Z]{2,4})"
mat chSt rat egy="mat chAl | " mat chType="ui ma. t cas. Docunent Annot ati on"/ >
</rul es>
<cr eat eAnnot at i ons>
<annot ation i d="emai |l Annot" type="org. apache. ui na. Emai | Addr ess" >
<begi n group="0"/>

</ annot at i on>
</ cr eat eAnnot ati ons>
</ concept >

</ concept Set >

The definition above defines are simple concept with the name enwi | Addr essDet ect i on. The
defined ruleuse ([a- zA- Z0- 9! #$% +' / =2~ _-"{|}~. \ x26]+) @[a- zA-Z0-9. -] +[a-
zA-Z] {2, 4}) asregular expression pattern that is matched on the covered text of the match type
ui ma. t cas. Docunent Annot at i on. As match strategy, mat chAl | isused that meansthat al
matches for the pattern are used to create the annotations defined in the <cr eat eAnnot at i ons>
element. So for each match aor g. apache. ui ma. Emai | Addr ess annotation is created that
covers the match in the document text.

For additional annotation creation possibilities such as adding features to a created annotation,
please refer to Section 2.5, “ Annotation Creation” [9]

2.2.

Concept definition

The syntax of a complex Concept definition to detect credit card numbers for the RegexAnnotator
is shown in the listing below:

<concept Set xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

Concepts Configuration File 3

Concept definition

xsi : noNamespaceSchenalLocat i on="concept . xsd" >

<concept name="credi t Car dNunber Det ecti on" processAl | Rul es="true">
<rul es>
<rul e rul el d="Ameri canExpr ess"
regex="(((34|37)\d{2}[-]?)(\d{6}[-]?)\d{5})"
mat chSt rat egy="mat chAl | "
mat chType="ui ma. t cas. Docunment Annot ati on"
confidence="1.0"/>
<rul e rul eld="Visa"
regex="((MNd{3}[- [?2)(\d{4}[-]?){2}\d{4})"
mat chSt r at egy="mat chAl | "
mat chType="ui ma. t cas. Docunent Annot ati on"
confidence="1.0"/>
<rul e rul el d="Mast er Car d"
regex="((5[1-5]\d{2}[- 1?)(\d{4}[- 1?){2}\d{4})"
mat chSt r at egy="mat chAl | "
mat chType="ui na. t cas. Docunment Annot ati on"
confi dence="1.0"/>
<rul e rul el d="unknownCar dType"
regex="(([1-6]\d{3}[-])(\d{4}[-]){2}\d{4})]|
([1-6]\d{13,18}) | ([1-6]\d{3}[- J\d{6}[- J\d{5})"
mat chSt rat egy="mat chAl | "
mat chType="ui ma. t cas. Docunment Annot ati on"
confidence="1.0"/>
</rul es>
<cr eat eAnnot at i ons>
<annot ation id="credit CardNunber"
type="org. apache. ui ma. Cr edi t Car dNurber "
val i dat e="or g. apache. ui ma. annot at or . r egex.
ext ensi on. i npl . Credit Car dNunber Val i dat or ">
<begi n group="0"/>
<end group="0"/>
<set Feat ure name="confi dence" type="Confidence"/>
<set Feat ure name="cardType" type="Ruleld"/>
</ annot ati on>
</ cr eat eAnnot at i ons>
</ concept >

</ concept Set >

As you can see the Concept definition is a more complex RuleSet definition. The main
differences are some additional features defined at the rule and the combination of rules within
one concept. The new features for arule arer ul el Dand conf i dence. If these features are
specified, the feature values for these features can later be assigned to an annotation feature

for a created annotation. In case we use the listing above as example this means that when

theor g. apache. ui ma. Cr edi t Car dNunber is created the value of the conf i dence

feature of the rule that matched the document text is assigned to the annotation feature called
confi denceVval ue. The sameisdonefor ther ul el d feature. With that you can later check your
annotation confidence and you can see which rule was responsible for the annotation creation.

Note: The annotation features for Conf i dence and Rul el d have to be created manually
in the UIMA type system. Given that it is possible to assign the conf i dence andrul el d
feature values to any other annotation feature you have defined in the UIMA type system.
Confidence features have to be of type ui ma. cas. Fl oat and Ruleld features have to be
of typeui ma. cas. String.

The processing of a concept definition depends on the rule processing. The feature that controls
the rule processing iscalled pr ocessAl | Rul es and is specified at the <concept > element. By
default this optional featureis set to f al se. This means that the concept processing starts with the

Concepts Configuration File UIMA Version 2.3.1

Regex Variables

first rule and goes on with the next one until a match was found. So in this processing mode, maybe
only thefirst rule of aconcept is evaluated if there a match was found. The other rules of this
concept will beignored in that case. This strategy should be used for example if your first concept
rule has a strict pattern with a confidence of 1.0 and your second rule has a more lenient pattern
with a confidence of 0.5. If the pr ocessAl | Rul es featureissettot r ue all rules of aconcept are
processed independent of the matches for a previous rule.

2.3. Regex Variables

The regex variables allows to externalize parts of aregular expression to shorten them and make
it easier to read. The externalized part of the expression is replaced with aregex variable. The
variable syntax looks like\ v{weekdays}, where weekdays isthe variable name. Thefield for
regex variables are mainly the separation of enumerationsin aregular expression to make them
easier to understand and maintain. But let's see how it works in the short example below.

A simple regular expression for adate like Wednesday, Novenber 28, 2007 canlook like:

<concept name="Date" processAl | Rul es="true">
<rul es>
<rul e regEx="(Mnday| Tuesday| Wednesday| Thur sday| Fri day| Sat ur day| Sunday) ,
(January| February| March| Apri | | May| June| Jul y| August | Sept enber | Oct ober
Novenber | Decenber) (O[1-9]|[12][0-9]|3[01]), ((219]20)\d\d)"
mat chStrat egy="nmat chAl | " mat chType="ui na. t cas. Docunent Annot ati on"/ >
</rul es>
<cr eat eAnnot at i ons>
<annot ati on type="org. apache. ui na. Dat e" >
<begi n group="0" />
<end group="0" />
</ annot ati on>
</ cr eat eAnnot at i ons>
</ concept >

When using regex variables to externalize the weekdays and the months in this regular expression,
it looks like:

<concept Set xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://incubator. apache. or g/ ui na/ r egex" >

<vari abl es>
<vari abl e nane="weekdays"
val ue="Monday| Tuesday| Wednesday| Thur sday| Fri day| Sat ur day| Sunday"/ >

<vari abl e name="nont hs"
val ue="January| February| March| Apri | | May| June| Jul y| August | Sept enber
Cct ober | Novenber | Decenber "/ >
</vari abl es>

<concept name="Date" processAl | Rul es="true">
<rul es>
<rul e regex="(\v{weekdays}), (\v{rmonths}) (O0[21-9]|[212][0-9]|3[01]),
((19]20)\d\d)"
mat chStrat egy="nmat chAl | " mat chType="ui na. t cas. Docunent Annot ati on"/ >
</rul es>
<cr eat eAnnot at i ons>
<annot ati on type="org. apache. ui ma. Dat e" >
<begi n group="0" />
<end group="0" />

UIMA Version 2.3.1 Concepts Configuration File 5

Rule Definition

</ annot at i on>
</ cr eat eAnnot at i ons>
</ concept >

</ concept Set >

The regex variables must be defined at the beginning of the concept file next to the <concept Set >
element before the concepts are defined. The variables can be used in al concept definition within
the samefile.

The regex variable name can contain any of the following characters|[a- zA- Z_0- 9] . Other
characters are not allowed.

2.4. Rule Definition

This paragraph shows in detail how to define arule for a RuleSet or Concept definition and give
you some advanced configuration possibilities for the rule processing.

The listing below shows an abstract rule definition with al possible sub elements and attributes.
Please refer to the sub sections for detail s about the sub elements.

<rule ruleld="1D1" regEx="Test Regex" matchStrategy="matchAl |’
mat chType="ui ma. t cas. Docunment Annot ati on" feat urePat h="nmny/ f eat ure/ pat h"
confi dence="1.0">

<mat chTypeFi |l ter >
<f eature name="| anguage" >en</ f eat ure>
</ mat chTypeFi | t er >

<updat eMat chTypeAnnot at i on>
<set Feat ure nane="| anguage" type="Stri ng">$0</set Feat ure>
</ updat eMat chTypeAnnot ati on>

<rul eExcepti ons>
<excepti on mat chType="ui ma. t cas. Docunment Annot ati on" >
Excepti onExpr essi on
</ excepti on>
</ rul eExcepti ons>

</rul e>

For each rule that should be added a <r ul e> element have to be created. The <r ul e> element
definition has three mandatory features, these are:

* regEx - Theregular expression pattern that is used for thisrule. As pattern, everything
supported by the Java regular expression syntax is alowed.

» mat chStr at egy - The match strategy that is used for this rule. Possible values are
mat chAl | to get all matches, mat chFi r st to get the first match only and mat chConpl et e
to get matches where the whole input text match the regular expression pattern.

» mat chType - The annotation type that is used to match the regular expression pattern. As
input text for the match, the annotation span is used, but only if no additional f eat ur ePat h
feature is specified.

In addition to the mandatory features the <r ul e> element definition also has some optiona
features that can be used, these are:

6 Concepts Configuration File UIMA Version 2.3.1

Match Type Filter

* rul el d - SpecifiestheID for thisrule. The ID can later be used to add it asvalueto an
annotation feature (see Section 2.5.3, “Annotation Features’ [11]).

» confi dence - Specifies the confidence value of thisrule. If you have more than onerule
that describes the same complex entity you can classify the rules with a confidence value.
This confidence value can later be used to add it as value to an annotation feature (see
Section 2.5.3, * Annotation Features’ [11]).

 featurePat h - Specifies the feature path that should be used to match the regular
expression pattern. If afeature path is specified, the feature path value is used to match
against the regular expression instead of the match type annotation span. The defined feature
path must be valid for the specified match type annotation type. The feature path elements
are separated by "/".

The listing below shows how to match aregular expression on the nor mal i zedText
feature of aui ma. TokenAnnot at i on. So in this case, not the covered text of

the ui ma. TokenAnnot at i on is used to match the regular expression but the

nor mal i zedText feature value of the annotation. The nor nal i zedText feature must be
defined in the UIMA type system as feature of type ui na. TokenAnnot at i on.

<rul e regEx="Test Regex" matchStrategy="nmatchA |"
mat chType="ui ma. TokenAnnot ati on" featurePat h="nornal i zedText" >
</rul e>

2.4.1. Match Type Filter

<mat chTypeFi | t er >
<feature featurePath="|anguage">en</feature>
</ mat chTypeFil ter>

Match type filters can be used to filter the match type annotations that are used for matching the
regular expression pattern. For example to use a rule only when the document language is English,
as shown in the example above. Match typefilters ever relate to the mat chType that was specified
for therule.

The <mat chTypeFi | t er > element can contain an arbitrary amount of <f eat ur e> elements that
contains the filter information. But all specified <f eat ur e> elements have to be valid for the
mat chType annotation of the rule.

The feature path that should be used as filter is specified using the f eat ur ePat h feature of the

<f eat ur e> element. Feature path elements are separated by "/" e.g. my/feature/path. The specified
feature path must be valid for the mat chType annotation. The content of the <f eat ur e> element
contains the regular expression pattern that is used as filter. To pass thefilter, this pattern have to
match the feature path value that is resolved using the match type annotation. In the example above
the match type annotation has a UIMA feature called | anguage that have to have the content en.
If that is true, the annotation passed the filter condition.

2.4.2. Update Match Type Annotations With Additional
Features

<updat eMat chTypeAnnot at i on>
<set Feat ure nane="| anguage" type="Stri ng">$0</set Feat ur e>

UIMA Version 2.3.1 Concepts Configuration File 7

Rule exception

</ updat eMat chTypeAnnot ati on>

With the <updat eMat chTypeAnnot at i on> construct it is possible to update or set a

UIMA feature value for the match type annotation in case a rule match was found. The
<updat eMat chTypeAnnot at i on> element can have an arbitrary amount of <set Feat ur e>
elements that contains the feature information that should be updated.

The <set Feat ur e> element has two mandatory features, these are:

* nane - Specifiesthe UIMA feature name that should be set. The feature have to be available
at the mat chType annotation of the rule.

» type - Specifiesthe UIMA feature type that is defined in the UIMA type system for this
feature. Currently supported featuretypesare St ri ng, | nt eger and Fl oat .

The optional features are:

* normal i zati on - Specifies the normalization that should be performed before the feature
valueis assigned to the match type annotation. For alist of al built-in normalization
functions please refer to Section 2.5.3.2, “Features Value Normalization” [12].

» cl ass - Specifies the custom normalization class that should be used to
normalize the feature value before it is assigned to the match type annotation.
Custom normalization classes are used if thenor nal i zat i on feature
has the value Cust om The normalization class have to implement the
or g. apache. ui ma. annot at or . r egex. ext ensi on. Nor mal i zat i on interface. For
details about the feature normalization please refer to Section 2.5.3.2, “ Features Value
Normalization” [12].

The content of the <set Feat ur e> element definition contains the feature value that should be set.
This can either be aliteral value or aregular expression capturing group as shown in the example
above. A combination of capturing groups and literalsis also possible.

2.4.3. Rule exception
<rul eExcepti ons>
<excepti on mat chType="ui na.t cas. Docunment Annot ati on" >
ExceptionPattern
</ excepti on>
</rul eExcepti ons>
With the <r ul eExcept i ons> construct it is possible to configure exceptions to prevent matches
for the rule. An exception is something similar to afilter, but on the higher level. For example take
the scenario where you have several token annotations that are covered by a sentence annotation.
Y ou have written arule that can detect car brands. The text you analyze has the sentence "Henry
Ford was born 1863". When analyzing the text you will get a car brand annotation since "Ford" isa
car brand. But is this the correct behavior? The work around that issue you can create an exception
that looks like
<rul eExcepti ons>
<excepti on mat chType="ui na. Sent enceAnnot at i on" >Henr y</ excepti on>
</ rul eExcepti ons>
and add it to your car brand rule. After adding this, car brand annotations are only created if the
sentence annotation that covers the token annotation does not contain the word "Henry".
8 Concepts Configuration File UIMA Version 2.3.1

Annotation Creation

The <r ul eExcept i ons> element can have an arbitrary amount of <except i on> elementsto
specify rule exceptions.

The <except i on> element has one mandatory feature called mat chType. The mat chType
feature specifies the annotation type the exception is based on. The concrete exception match type
annotation that is used during the runtime is evaluated for each match type annotation that is used
to match arule. As exception annotation always the covering annotation of the current match type
annotation is used. If no covering annotation instance of the exception match type was found the
exception is not evaluated.

The content of the <except i on> element specifies the regular expression that is used to evaluate
the exception.

If the exception match is true, the current match type annotation is filtered out and is not used to
create any matches and annotations.

2.5. Annotation Creation

This paragraph explains in detail how to create annotationsif a rule has matched some input text.
An annotation creation example with al possible settings is shown in the listing below.

<annotation id="testannot" type="org. apache. ui ma. Test Annot"
val i dat e=" Cust onVval i dat or C ass" >
<begi n group="0" | ocation="start"/>
<end group="0" | ocation="end"/>
<set Feat ure nane="test Featurel" type="String">%$0</set Feat ure>
<set Feat ure name="t est Feature2" type="String"
nor mal i zati on="ToLower Case" >$0</ set Feat ur e>
<set Feat ure name="t est Feature3" type="Integer">$1</set Feat ure>
<set Feat ure name="t est Feat ure4" type="Fl oat">%$2</ set Feat ur e>
<set Feat ure nanme="t est Feat ure5" type="Reference">t est annot 1</ set Feat ur e>
<set Feat ure nanme="confi denceVal ue" type="Confi dence"/>
<set Feature nane="rul el d" type="Rul el d"/>
<set Feat ure nane="nornal i zedText" type="String"
nor mal i zati on="Cust ont
cl ass="org. apache. Cust onNor mal i zer " >$0</ set Feat ur e>
</ annot ati on>

The <annot at i on> element has two mandatory features, these are:

* i d - Specifiesthe annotation id for this annotation. If the annotation id is specified, it must
be unique within the same concept. An annotation id is required if the annotation is referred
by another annotation or if the annotation itself refers other annotations using a Ref er ence
feature.

* type - Specifiesthe UIMA annotation type that is used if an annotation is created. The used
type have to be defined in the UIMA type system.

The optional features are:
» val i dat e - Specifies the custom validator classthat is used to validate matches before they
are added as annotation to the CAS. For more detail s about the custom annotation validation,
please refer to Section 2.5.2, “Annotation Validation” [10].

The mandatory sub elements of the <annot at i on> element are;

UIMA Version 2.3.1 Concepts Configuration File 9

Annotation Boundaries

» <begi n> - Specifies the begin position of the annotation that is created. For details about the
<begi n> element, please refer to Section 2.5.1, “ Annotation Boundaries’ [10].

» <end> - Specifiesthe end position of the annotation that is created. For details about the
<end> element, please refer to Section 2.5.1, “Annotation Boundaries’ [10].

The optional sub elements of the <annot at i on> element are:

» <set Feat ur e> - set aUIMA feature for the created annotation. For details about the
<set Feat ur e> element, please refer to Section 2.5.3, “ Annotation Features’ [11]

2.5.1. Annotation Boundaries

When creating an annotation with the <annot at i on> element it is also necessary to define the
annotations boundaries. The annotation boundaries are defined using the sub elements <begi n>
and <end>. The start position of the annotation is defined using the <begi n> element, the end
position using the <end> element. Both elements have the same features as shown below:

* group - identifies the capturing group number within the regular expression pattern for the
current rule. The value is a positive number where 0 denotes the whole match, 1 the first
capturing group, 2 the second one, and so on.

* | ocat i on - indicates a position inside the capturing group, which can either be the
position of the left parenthesisin case of avalue st ar t , or the right parenthesis in case of
avalueend. Thel ocat i on feature is optional. By default the <begi n> element is set to
| ocation="start" andthe<end> elementto| ocati on="end".

Note: When the rule definition defines af eat ur ePat h for amat chType, the annotation
boundaries for the created annotation are automatically set to the annotation boundaries of
the match input annotation. This must be done since the matching with a feature value of
an annotation has no relation to the document text, so the only relation is the annotation
where the feature is defined.

2.5.2. Annotation Validation

The custom annotation validation can be used to validate a regular expression match by using
some java code before the match is added as annotation to the CAS. For exampleif your regular
expression detects an ISBN number you can use the custom validation code to check if it isreally
an ISBN number by calculating the last check digit or if it isjust a phone number.

To use the custom annotation validation you have to specify the vaidation class at the

val i dat e feature of the <annot at i on> element. The validation class must implement the

or g. apache. ui ma. annot at or . r egex. ext ensi on. Val i dat i on interface (Appendix B,
Validation Interface [21]). The interface defines one method called val i dat e(Stri ng
coveredText, String rul el D). Thevalidate method is called by the annotator before the
match is added as annotation to the CAS. Annotations are only added if the validate method returns
t r ue, otherwise the match is skipped. Thecover edText parameter contains the text that matches
the regular expression. Ther ul el D parameter contains the ruldld of the rule that creates the match.
This can aso be null if no rulelD was specified. The listing below shows a sample implementation
of the validation interface.

package org. apache. ui ma. annot at or . r egex;

public class Sanpl eValidator inplenents
or g. apache. ui ma. annot at or . r egex. ext ensi on. Val i dati on {

10

Concepts Configuration File UIMA Version 2.3.1

Annotation Features

/* (non-Javadoc)
* @ee org. apache. ui ma. annot at or. r egex. ext ensi on. Val i dati on
* #val i date(j ava.l ang. String, java.lang. String)
*/
publi ¢ bool ean validate(String coveredText, String rul el D
throws Exception {

/i nmpl enent your customvalidation, e.g. to validate |ISBN nunbers
return val i dat el SBNNunber s(cover edText);
}
}

The configuration for this example looks like:

<annot ation id="i sbnNunber" type="org. apache. ui ma. | SBNNunber "
val i dat e="or g. apache. ui ma. annot at or . r egex. Sanpl eVal i dat or " >

<end group="0"/>

</ annot ati on>

2.5.3. Annotation Features

With the <set Feat ur e> element of <annot at i on> definition it is possible to set UIMA features
for the created annotation. The mandatory features for the <set Feat ur e> element are:

* nane - Specifiesthe UIMA feature name that should be set. The feature name haveto bea
valid UIMA feature for this annotation and have to be defined in the UIMA type system.

* type - Specifiesthe type of the UIMA feature. For alist of al possible feature types please
refer to Section 2.5.3.1, “Features Types’ [12].

The optional features are:

* normal i zat i on - Specifies the normalization that should be performed before the feature
valueis assigned to the UIMA annotation. For alist of al built-in normalization functions
please refer to Section 2.5.3.2, “ Features Vaue Normalization” [12].

* cl ass - Specifies the custom normalization class that should be used to normalize the
feature value before it is assigned to the UIMA annotation. Custom normalization classes are
used if the nor nal i zat i on feature has the value Cust om The normalization class have to
implement the or g. apache. ui ma. annot at or . r egex. ext ensi on. Nor mal i zat i on
interface. For details about the feature normalization please refer to Section 2.5.3.2,
“Features Value Normalization” [12].

The content of the <set Feat ur e> element specifies the value of the UIMA feature that is set.
Asvalue aliteral, a capturing group or a combination of both can be used. To add the value of

a capturing group there are two waysto do it. Thefirst notation is $ followed by the capturing
group number from 0 to 9 e.g. $0 for capturing group 0 or $7 for capturing group 7. The second
notation to get the value of a capturing group are capturing group names. If the rule contains named
capturing groups these groups can be accessed with ${ mat chGr oupNane} . For the access of
capturing groups greater than 9 capturing group names must be used. An example for capturing
group names is shown below:

To add a name to a capturing group just add the following fragment \ n{ gr oupnane} in front of
the capturing group start parenthesis.

UIMA Version 2.3.1 Concepts Configuration File 11

Annotation Features

<concept name="capturi ngG oupNanes" >
<rul es>
<rul e rul el d="1D1"
regEx="My \ n{ gr oupNane} (nanmed capturing group) exanple"
mat chStrat egy="nat chAl | "
mat chType="ui ma. t cas. Docunment Annot ati on"/ >
</rul es>
<cr eat eAnnot at i ons>
<annot ati on type="org. apache. ui ma. Test Annot " >
<begi n group="0"/>
<end group="0"/>
<set Feature name="t est Feature0" type="String">
${ gr oupNane}
</ set Feat ur e>
</ annot at i on>
</ cr eat eAnnot at i ons>
</ concept >

2.5.3.1. Features Types

When setting UIMA feature for an annotation using the <set Feat ur e> element the feature
type has to be specified according the the UIMA type system definition. The feature at the
<set Feat ur e> element to do that iscalled t ype. Thelist below shows all currently supported
feature types:

e String-forui ma. cas. String based UIMA features.
* Integer -forui ma. cas. | nt eger based UIMA features.
* Float - forui ma. cas. Fl oat based UIMA features.

» Ref erence -tolink aUIMA feature to another annotation. In this case the UIMA feature
type have to be the same as the referred annotation type. To reference another annotation
instance the <set Feat ur e> content must have the annotation i d as value of the referred
annotation. The referred annotation instance is the created annotation of the current match.

» Confi dence - to add the value of the conf i dence feature defined at the <r ul e> element
to thisfeature. The UIMA feature have to be of type ui ma. cas. Fl oat .

* Rul el d - to add the value of ther ul el d feature defined at the <r ul e> element to this
feature. The UIMA feature have to be of type ui na. cas. Stri ng.

Note: Float and Integer based feature values are converted using the Java NumberFormat
for the current Java default locale. If the feature value cannot be converted the feature
valueis not set and awarning is written to the log. To prevent these warnings it may be
useful to do a custom normalization of the numbers before they are added to the feature.

2.5.3.2. Features Value Normalization

Before assigning a feature value to an annotation it is possible to do a normalization on the feature
value. This normalization can be useful for example to normalize a detected email addresses to
lower case before it is added to the annotation. To normalize afeature value the nor mal i zat i on
feature of the <set Feat ur e> element is used. The built-in normalization functions are listed
below. Additionally the RegexAnnotator provides an extension point that can be implemented to
add a custom normalization.

Concepts Configuration File UIMA Version 2.3.1

Annotation Features

The possible build-in functions that are specified as feature value of the nor nal i zat i on feature
are listed below:

» ToLower Case - normalize the feature value to lower case beforeit is assigned to the
annotation.

* ToUpper Case - normalize the feature value to upper case beforeit is assigned to the
annotation.

* Tri m-removeall leading and trailing whitespace characters from the feature value before it
is assigned to the annotation.
Built-in normalization configuration:

<set Feat ure name="normal i zedFeat ure" type="Stri ng"
nor mal i zat i on="ToLower Case" >$0</ set Feat ur e>

In case of a custom normalization, the nor mal i zat i on feature must have the value

Cust om and an additional feature of the <set Feat ur e> element called cl ass have

to be specified containing the full qualified class name of the custom normalization
implementation. The custom normalization implementation have to implement the interface
or g. apache. ui ma. annot at or . r egex. ext ensi on. Nor nal i zat i on (Appendix C,
Normalization Interface [23]) which defines the nor nal i ze method to normalize the feature
values. A sample implementation with the corresponding configuration is shown below.

Custom normalization implementation:

package org. apache. ui mg;

public class CustomNormalizer
i mpl enent's org. apache. ui ma. annot at or . r egex. ext ensi on. Nor nal i zati on {

/* (non-Javadoc)

* @ee org.apache. ui ma. annot at or. r egex. ext ensi on. Nor nal i zat i on
* #normalize(java.lang. String, java.lang. String)

*/

public String normalize(String input, String ruleld) {

/1'inplenment your custom nornalization
String result = ...
return result;

Custom normalization configuration:

<set Feat ure name="nor mal i zedFeat ure" type="String"
normal i zati on="Cust on' cl ass="or g. apache. ui ma. Cust onNor el i zer" >
$0

</ set Feat ur e>

UIMA Version 2.3.1 Concepts Configuration File 13

Chapter 3. Annotator Descriptor

The RegexAnnotator analysis engine descriptor contains some processing information for the
annotator. The processing information is specified as configuration parameters. This chapter we
explain in detail the possible descriptor settings.

3.1. Configuration Parameters

The RegexAnnotator has the following configuration parameters:

» Concept Fi | es - This parameter is modeled as array of Strings and contains the concept
files the annotator should use. The concept files must be specified using arelative path that
isavailable in the UIMA datapath or in the classpath. When you use the UIMA datapath,
you can use wildcard expressions such asr ul es/ *. r ul e. These kinds of wildcard
expressions will not work when rule files are discovered viathe classpath.

<naneVal uePai r >
<nanme>Concept Fi | es</ nane>
<val ue>
<array>
<string>subdir/ myConcepts. xm </string>
<stri ng>Sanpl eConcept. xm </ stri ng>
</ array>
</val ue>
</ naneVal uePai r >

3.2. Capabilities

In the capabilities section of the RegexAnnotator descriptor the input and output capabilities and
the supported |anguages have to be defined.

The input capabilities defined in the descriptor have to comply with the match types used in the
concept rulefilethat is used. For example the ui ma. Sent enceAnnot at i on used in therule
below have to be added to the input capability section in the RegexAnnotator descriptor.

<rul es>
<rul e regEx="Sanpl eRegex" mat chStrat egy="mat chAl | "
mat chType="ui ma. Sent enceAnnot ati on"/ >
</rul es>

In the output section, all of the annotation types and features created by the RegexAnnotator have
to be specified. These have to match the output types and features declared in the <annot at i on>
elements of the concept file. For examplethe or g. apache. ui ma. Test Annot annotation and
the or g. apache. ui ma. Test Annot : t est Feat ur e feature used below have to be added to the
output capability section in the RegexAnnotator descriptor.

<cr eat eAnnot ati ons>
<annot ation type="org. apache. ui ma. Test Annot ">
<begi n group="0"/>
<end group="0"/>
<set Feat ure name="t est Feature" type="String">$0</set Feat ure>
</ annot at i on>
</ cr eat eAnnot at i ons>

Annotator Descriptor 15

Capabilities

If there are any language dependent rules in the concept file the languages abbreviations have to

be specified in the <I anguagesSuppor t ed>element. If there are no language dependent rules
available you can specify x- unspeci f i ed aslanguage. That means that the annotator can work on
all languages.

For the short examples used above the capabilities section in the RegexAnnotator descriptor |ooks
like:

<capabilities>
<capability>
<i nput s>
<t ype>ui ma. Sent enceAnnot at i on</type>
</i nput s>
<out put s>
<t ype>or g. apache. ui na. Test Annot </ t ype>
<f eat ur e>or g. apache. ui ma. Test Annot : t est Feat ur e</ f eat ur e>
</ out put s>
<l anguagesSupport ed>
<l anguage>x- unspeci fi ed</ | anguage>
</ | anguagesSupport ed>
</ capability>
</ capabilities>

16

Annotator Descriptor UIMA Version 2.3.1

Appendix A. Concept File Schema

The concept file schemathat is used to define the concept file looks like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema"
t ar get Nanespace="htt p: //i ncubat or. apache. or g/ ui na/ r egex"
xm ns="http://incubator. apache. or g/ ui na/ r egex"
el ement For nDef aul t ="qual i fi ed">

<I--

* Licensed to the Apache Software Foundation (ASF) under one
or nore contributor |icense agreenents. See the NOTICE file
distributed with this work for additional information
regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE-2. 0

Unl ess required by applicable |law or agreed to in witing,
sof tware distributed under the License is distributed on an
"AS | S" BASIS, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fi ¢ | anguage governing pernmissions and |limtations
under the License.

E I S I T I S .)

\%

<xs: el ement nanme="concept Set ">

<xs:conpl exType>
<Xs:sequence>

<xs: el ement ref="concept" m nCccurs="0" nmaxCccurs="unbounded"/ >
</ xs: sequence>

</ xs: conpl exType>

</ xs: el emrent >

<xs: el ement nanme="concept">
<xs:conpl exType>
<Xs:sequence>
<xs:element ref="rules" m nCccurs="1" maxCccurs="1"/>
<xs: el enent ref="createAnnotations" m nCccurs="1" maxCccurs="1"/>
</ xs: sequence>
<xs:attribute nane="nanme" type="xs:string" use="optional"/>
</ xs: conpl exType>
</ xs: el emrent >

<xs: el enent nane="creat eAnnot ati ons" >

<xs:conpl exType>
<XS: sequence>

<xs:elenent ref="annotation" m nCccurs="1" maxCccur s="unbounded"/>
</ xs: sequence>

</ xs: conpl exType>

</ xs: el enent >

<xs: el enent nane="rul es">
<xs:conpl exType>
<XS: sequence>
<xs:elenment ref="rule" m nCccurs="1" nmaxCccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

Concept File Schema

<xs:el ement name="rul e">
<xs: conpl exType>
<xs:all>
<xs:element ref="matchTypeFilter" m nCccurs="0" nmaxCccurs="1"/>
<xs: el ement ref="updat eMat chTypeAnnot ati on" m nCccurs="0" maxQccurs="1"/>
<xs: el ement ref="rul eExceptions" m nCccurs="0" maxCccurs="1"/>
</xs:all>
<xs:attribute name="regEx" type="xs:string" use="required"/>
<xs:attribute nane="matchStrategy" use="required">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="matchFirst"/>
<xs:enumeration val ue="matchAl | "/>
<xs: enuneration val ue="nat chConpl ete"/>
</xs:restriction>
</ xs: si nmpl eType>
</xs:attribute>
<xs:attribute nane="matchType" type="xs:string" use="required"/>
<xs:attribute nane="featurePath" type="xs:string" use="optional" />
<xs:attribute nane="rul eld" type="xs:string" use="optional"/>
<xs:attribute nane="confi dence" type="xs:decinmal" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >

<xs:el ement name="matchTypeFilter">

<xs: conpl exType>
<Xs:sequence>

<xs:el ement ref="feature" m nCccurs="0" maxQccur s="unbounded"/ >
</ xs: sequence>

</ xs: conpl exType>

</ xs: el ement >

<xs: el ement name="rul eExcepti ons">
<xs: conpl exType>
<Xs: sequence>
<xs: el ement ref="exception" m nCccurs="0" maxQccurs="unbounded"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement name="exception">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs:extensi on base="xs:string">
<xs:attribute nane="matchType" type="xs:string" use="required"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el emrent >

<xs:el ement name="feature">
<xs:conpl exType>
<xs: si npl eCont ent >
<xs:extensi on base="xs:string">
<xs:attribute nane="featurePath" type="xs:string" use="required"/>
</ xs: ext ensi on>
</ xs: si nmpl eCont ent >
</ xs: conpl exType>
</ xs: el emrent >

<xs: el emrent nane="annot ati on">

Concept File Schema UIMA Version 2.3.1

<xs: conpl exType>
<Xs:sequence>
<xs:el ement ref="begin" m nCccurs="1" maxCccurs="1"/>
<xs:el ement ref="end" m nCccurs="1" maxQccurs="1"/>
<xs: el ement ref="setFeature" m nCQccurs="0" maxQccurs="unbounded"/>
</ xs: sequence>
<xs:attribute nane="id" type="xs:string" use="optional"/>
<xs:attribute nane="type" type="xs:string" use="required"/>
<xs:attribute name="validate" type="xs:string" use="optional" />
</ xs: conpl exType>
</ xs: el emrent >

<xs: el ement name="updat eMat chTypeAnnot ati on" >
<xs:conpl exType>
<Xs:sequence>
<xs: el ement ref="setFeature" m nCccurs="0" maxCQccurs="unbounded"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

<xs: el ement nane="begi n">
<xs:conpl exType>
<xs:attribute nane="group" use="required" type="xs:integer"/>
<xs:attribute nane="locati on" use="optional" default="start">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enumneration value="start"/>
<xs:enumeration val ue="end"/>
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement nanme="end">
<xs: conpl exType>
<xs:attribute nane="group" use="required" type="xs:integer"/>
<xs:attribute nane="Ilocati on" use="optional" default="end">
<xs:si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="start"/>
<xs:enumneration val ue="end"/ >
</xs:restriction>
</ xs: si mpl eType>
</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement name="set Feature">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs:extension base="xs:string">
<xs:attribute nane="nanme" type="xs:string" use="required"/>
<xs:attribute nane="type" use="required">
<xs:si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="String"/>
<xs:enumeration val ue="Integer"/>
<xs:enumeration val ue="Fl oat"/>
<xs:enumeration val ue="Reference"/>
<xs:enuneration val ue="Confi dence"/>
<xs:enuneration val ue="Rul el d"/>

UIMA Version 2.3.1 Concept File Schema

19

</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute nanme="normalization" use="optional ">
<xs:si npl eType>
<xs:restriction base="xs:string">
<xs:enumeration val ue="Custoni />
<xs:enuneration val ue="ToLower Case" />
<xs:enuneration val ue="ToUpper Case" />
<xs:enumneration value="Trim />
</xs:restriction>
</ xs: si nmpl eType>
</xs:attribute>

<xs:attribute nane="cl ass" type="xs:string" use="optional" />

</ xs: ext ensi on>

</ xs: si npl eCont ent >
</ xs: conpl exType>

</ xs: el enent >
</ xs: schema>

20

Concept File Schema

UIMA Version 2.3.1

Appendix B. Validation Interface

Li censed to the Apache Software Foundation (ASF) under one
or nmore contributor |icense agreements. See the NOTICE file
distributed with this work for additional information
regardi ng copyri ght ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You nay obtain a copy of the License at

http://ww. apache. org/|icenses/ LI CENSE- 2. 0

Unl ess required by applicable law or agreed to in witing,
sof tware distributed under the License is distributed on an
"AS |S" BASI'S, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fic | anguage governing pernissions and |linmtations
under the License.

/

package org. apache. ui ma. annot at or. r egex. ext ensi on;

E S R I R S . R N

/**

* The Validation interface is provided to inplenent a custom validator
* that can be used to validate regul ar expressi on nmatches before

* they are added as annotati ons.

*/

public interface Validation {

*

/
The validate nethod validates the covered text of an annotator and
returns true or false whether the annotation is correct or not.
The validate nethod is called between a rule match and the
annotation creation. The annotation is only created if the nethod
returns true.

@ar am cover edText covered text of the annotation that should be
val i dat ed
@aramrulelD rulel D of the rule which created the match

@eturn true if the annotation is valid or false if the annotation
is invalid

E I R I S I R I N R T

~

@hrows Exception throws an exception if an validation error occurred

public bool ean validate(String coveredText, String rul el D)
throws Excepti on;

Validation Interface

21

Appendix C. Normalization Interface

Li censed to the Apache Software Foundation (ASF) under one
or nmore contributor |icense agreements. See the NOTICE file
distributed with this work for additional information
regardi ng copyri ght ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You nay obtain a copy of the License at

http://ww. apache. org/|icenses/ LI CENSE- 2. 0

Unl ess required by applicable law or agreed to in witing,
sof tware distributed under the License is distributed on an
"AS |S" BASI'S, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fic | anguage governing pernissions and |linmtations
under the License.

/

package org. apache. ui ma. annot at or. r egex. ext ensi on;

E S R I R S . R N

/**
* The Normalization interface was add to inplenment a custom nornalization
* for feature val ues before they are assigned to an anntoati on.
*/

public interface Normalization {

* %

/* Custom feature val ue normalization. This interface nmust be inpl emented
* to performa custom nornmalization on the given input string.

*

* @araminput input string which should be nornalized

*

* @aramrulelD rule ID of the natching rule

*

* @eturn String - nornalized input string

*/

public String normalize(String input, String rulelD) throws Exception;

}

Normalization Interface

	Apache UIMA Regular Expression Annotator Documentation
	Table of Contents
	Introduction
	Chapter 1. Processing Overview
	Chapter 2. Concepts Configuration File
	2.1. RuleSet definition
	2.2. Concept definition
	2.3. Regex Variables
	2.4. Rule Definition
	2.4.1. Match Type Filter
	2.4.2. Update Match Type Annotations With Additional Features
	2.4.3. Rule exception

	2.5. Annotation Creation
	2.5.1. Annotation Boundaries
	2.5.2. Annotation Validation
	2.5.3. Annotation Features
	2.5.3.1. Features Types
	2.5.3.2. Features Value Normalization

	Chapter 3. Annotator Descriptor
	3.1. Configuration Parameters
	3.2. Capabilities

	Appendix A. Concept File Schema
	Appendix B. Validation Interface
	Appendix C. Normalization Interface

