
Apache UIMA Regular Expression
Annotator Documentation

Written and maintained by the Apache UIMA Development Community

Version 2.3.1

Copyright © 2006, 2011 The Apache Software Foundation

License and Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2011

http://www.apache.org/licenses/LICENSE-2.0

Apache UIMA Regular Expression
Annotator Documentation iii

Table of Contents
Introduction .. v
1. Processing Overview ... 1
2. Concepts Configuration File ... 3

2.1. RuleSet definition ... 3
2.2. Concept definition .. 3
2.3. Regex Variables ... 5
2.4. Rule Definition ... 6

2.4.1. Match Type Filter .. 7
2.4.2. Update Match Type Annotations With Additional Features 7
2.4.3. Rule exception ... 8

2.5. Annotation Creation .. 9
2.5.1. Annotation Boundaries .. 10
2.5.2. Annotation Validation ... 10
2.5.3. Annotation Features .. 11

3. Annotator Descriptor .. 15
3.1. Configuration Parameters ... 15
3.2. Capabilities .. 15

A. Concept File Schema .. 17
B. Validation Interface ... 21
C. Normalization Interface ... 23

Introduction v

Introduction
The Regular Expression Annotator (RegexAnnotator) is an Apache UIMA analysis engine that
detects entities such as email addresses, URLs, phone numbers, zip codes or any other entity that
can be specified using a regular expression. For each entity that is detected an own annotation
can be created or an already existing annotation can be updated with new features. To detect also
more difficult and complex entities, the annotator provides some advanced filter capabilities and a
rule definition syntax that can combine rules to a concept with a confidence value for each of the
concept's rules.

Processing Overview 1

Chapter 1. Processing Overview
To detect any kind of entity the RegexAnnotator must be configured using an external XML file.
We call this file "concept file" since it contains the regular expressions and concepts that the
annotator use during its processing to detect entities. In addition to the rules the concept file also
contains the "entity result processing" that is done if an entity was detected. The "entity result
processing" can either be the creation of new annotations or an update of an existing annotation
with additional features. The types and features that are used to create new annotations have to be
available in the UIMA type system.

After the concept file is created, the annotator XML descriptor have to be updated with the
capabilities and maybe with the type system information from the concept file. The capability
update is necessary that the UIMA framework can call the annotator also in complex annotator
flows if the annotator is assembled with others to an analysis bundle. The UIMA type system
update is only necessary if the used types are not available in the UIMA type system definition.

With the completion of the descriptor updates, the RegexAnnotator is ready to use. When starting
the annotator, during the initialization the annotator reads the concept file and checks if all rules
and concepts are valid and if all annotations types are defined in the UIMA type system. For
each document that is processed the rules and concepts are executed in exactly the same order as
defined in the concept file. The results and annotations created for a preceding rule are used by the
following one since they are stored in the CAS.

Concepts Configuration File 3

Chapter 2. Concepts Configuration File
The RegexAnnotator can be configured using two levels of complexity.

The RuleSet definition is the easier way to define rules. Such a definition consists of a regular
expression pattern and of annotations that should be created if the rule match an entity.

The Concept definition is the more complex way to define rules. Such a definition can consists of
more than one regular expression rule that can be combined together and of a set of annotations that
should be created if one of the rules has matched an entity.

The syntax for both definitions is the same, so you don't need to learn two configuration
possibilities. The RuleSet definition is just available to have an easier and faster way to configure
the annotator for simple tasks. If you have a RuleSet definition it is also possible to extend it with
more and more features so that it becomes a real Concept definition.

2.1. RuleSet definition
The syntax of a simple RuleSet definition to detect email addresses is shown in the listing below:

<conceptSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="concept.xsd">

 <concept name="emailAddressDetection">
 <rules>
 <rule regEx="([a-zA-Z0-9!#$%*+'/=?^_-`{|}~.\x26]+)@
 ([a-zA-Z0-9._-]+[a-zA-Z]{2,4})"
 matchStrategy="matchAll" matchType="uima.tcas.DocumentAnnotation"/>
 </rules>
 <createAnnotations>
 <annotation id="emailAnnot" type="org.apache.uima.EmailAddress">
 <begin group="0"/>
 <end group="0"/>
 </annotation>
 </createAnnotations>
 </concept>

</conceptSet>

The definition above defines are simple concept with the name emailAddressDetection. The
defined rule use ([a-zA-Z0-9!#$%*+'/=?^_-`{|}~.\x26]+)@([a-zA-Z0-9._-]+[a-
zA-Z]{2,4}) as regular expression pattern that is matched on the covered text of the match type
uima.tcas.DocumentAnnotation. As match strategy, matchAll is used that means that all
matches for the pattern are used to create the annotations defined in the <createAnnotations>
element. So for each match a org.apache.uima.EmailAddress annotation is created that
covers the match in the document text.

For additional annotation creation possibilities such as adding features to a created annotation,
please refer to Section 2.5, “Annotation Creation” [9]

2.2. Concept definition
The syntax of a complex Concept definition to detect credit card numbers for the RegexAnnotator
is shown in the listing below:

<conceptSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Concept definition

4 Concepts Configuration File UIMA Version 2.3.1

 xsi:noNamespaceSchemaLocation="concept.xsd">

 <concept name="creditCardNumberDetection" processAllRules="true">
 <rules>
 <rule ruleId="AmericanExpress"
 regEx="(((34|37)\d{2}[-]?)(\d{6}[-]?)\d{5})"
 matchStrategy="matchAll"
 matchType="uima.tcas.DocumentAnnotation"
 confidence="1.0"/>
 <rule ruleId="Visa"
 regEx="((4\d{3}[-]?)(\d{4}[-]?){2}\d{4})"
 matchStrategy="matchAll"
 matchType="uima.tcas.DocumentAnnotation"
 confidence="1.0"/>
 <rule ruleId="MasterCard"
 regEx="((5[1-5]\d{2}[-]?)(\d{4}[-]?){2}\d{4})"
 matchStrategy="matchAll"
 matchType="uima.tcas.DocumentAnnotation"
 confidence="1.0"/>
 <rule ruleId="unknownCardType"
 regEx="(([1-6]\d{3}[-])(\d{4}[-]){2}\d{4})|
 ([1-6]\d{13,18})|([1-6]\d{3}[-]\d{6}[-]\d{5})"
 matchStrategy="matchAll"
 matchType="uima.tcas.DocumentAnnotation"
 confidence="1.0"/>
 </rules>
 <createAnnotations>
 <annotation id="creditCardNumber"
 type="org.apache.uima.CreditCardNumber"
 validate="org.apache.uima.annotator.regex.
 extension.impl.CreditCardNumberValidator">
 <begin group="0"/>
 <end group="0"/>
 <setFeature name="confidence" type="Confidence"/>
 <setFeature name="cardType" type="RuleId"/>
 </annotation>
 </createAnnotations>
 </concept>

</conceptSet>

As you can see the Concept definition is a more complex RuleSet definition. The main
differences are some additional features defined at the rule and the combination of rules within
one concept. The new features for a rule are ruleID and confidence. If these features are
specified, the feature values for these features can later be assigned to an annotation feature
for a created annotation. In case we use the listing above as example this means that when
the org.apache.uima.CreditCardNumber is created the value of the confidence
feature of the rule that matched the document text is assigned to the annotation feature called
confidenceValue. The same is done for the ruleId feature. With that you can later check your
annotation confidence and you can see which rule was responsible for the annotation creation.

Note: The annotation features for Confidence and RuleId have to be created manually
in the UIMA type system. Given that it is possible to assign the confidence and ruleId
feature values to any other annotation feature you have defined in the UIMA type system.
Confidence features have to be of type uima.cas.Float and RuleId features have to be
of type uima.cas.String.

The processing of a concept definition depends on the rule processing. The feature that controls
the rule processing is called processAllRules and is specified at the <concept> element. By
default this optional feature is set to false. This means that the concept processing starts with the

Regex Variables

UIMA Version 2.3.1 Concepts Configuration File 5

first rule and goes on with the next one until a match was found. So in this processing mode, maybe
only the first rule of a concept is evaluated if there a match was found. The other rules of this
concept will be ignored in that case. This strategy should be used for example if your first concept
rule has a strict pattern with a confidence of 1.0 and your second rule has a more lenient pattern
with a confidence of 0.5. If the processAllRules feature is set to true all rules of a concept are
processed independent of the matches for a previous rule.

2.3. Regex Variables
The regex variables allows to externalize parts of a regular expression to shorten them and make
it easier to read. The externalized part of the expression is replaced with a regex variable. The
variable syntax looks like \v{weekdays}, where weekdays is the variable name. The field for
regex variables are mainly the separation of enumerations in a regular expression to make them
easier to understand and maintain. But let's see how it works in the short example below.

A simple regular expression for a date like Wednesday, November 28, 2007 can look like:

<concept name="Date" processAllRules="true">
 <rules>
 <rule regEx="(Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday),
 (January|February|March|April|May|June|July|August|September|October|
 November|December) (0[1-9]|[12][0-9]|3[01]), ((19|20)\d\d)"
 matchStrategy="matchAll" matchType="uima.tcas.DocumentAnnotation"/>
 </rules>
 <createAnnotations>
 <annotation type="org.apache.uima.Date">
 <begin group="0" />
 <end group="0" />
 </annotation>
 </createAnnotations>
</concept>

When using regex variables to externalize the weekdays and the months in this regular expression,
it looks like:

<conceptSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://incubator.apache.org/uima/regex">

<variables>
 <variable name="weekdays"
 value="Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday"/>

 <variable name="months"
 value="January|February|March|April|May|June|July|August|September|
 October|November|December"/>
</variables>

<concept name="Date" processAllRules="true">
 <rules>
 <rule regEx="(\v{weekdays}), (\v{months}) (0[1-9]|[12][0-9]|3[01]),
 ((19|20)\d\d)"
 matchStrategy="matchAll" matchType="uima.tcas.DocumentAnnotation"/>
 </rules>
 <createAnnotations>
 <annotation type="org.apache.uima.Date">
 <begin group="0" />
 <end group="0" />

Rule Definition

6 Concepts Configuration File UIMA Version 2.3.1

 </annotation>
 </createAnnotations>
</concept>

</conceptSet>

The regex variables must be defined at the beginning of the concept file next to the <conceptSet>
element before the concepts are defined. The variables can be used in all concept definition within
the same file.

The regex variable name can contain any of the following characters [a-zA-Z_0-9]. Other
characters are not allowed.

2.4. Rule Definition
This paragraph shows in detail how to define a rule for a RuleSet or Concept definition and give
you some advanced configuration possibilities for the rule processing.

The listing below shows an abstract rule definition with all possible sub elements and attributes.
Please refer to the sub sections for details about the sub elements.

<rule ruleId="ID1" regEx="TestRegex" matchStrategy="matchAll"
 matchType="uima.tcas.DocumentAnnotation" featurePath="my/feature/path"
 confidence="1.0">

 <matchTypeFilter>
 <feature name="language">en</feature>
 </matchTypeFilter>

 <updateMatchTypeAnnotation>
 <setFeature name="language" type="String">$0</setFeature>
 </updateMatchTypeAnnotation>

 <ruleExceptions>
 <exception matchType="uima.tcas.DocumentAnnotation">
 ExceptionExpression
 </exception>
 </ruleExceptions>

</rule>

For each rule that should be added a <rule> element have to be created. The <rule> element
definition has three mandatory features, these are:

• regEx - The regular expression pattern that is used for this rule. As pattern, everything
supported by the Java regular expression syntax is allowed.

• matchStrategy - The match strategy that is used for this rule. Possible values are
matchAll to get all matches, matchFirst to get the first match only and matchComplete
to get matches where the whole input text match the regular expression pattern.

• matchType - The annotation type that is used to match the regular expression pattern. As
input text for the match, the annotation span is used, but only if no additional featurePath
feature is specified.

In addition to the mandatory features the <rule> element definition also has some optional
features that can be used, these are:

Match Type Filter

UIMA Version 2.3.1 Concepts Configuration File 7

• ruleId - Specifies the ID for this rule. The ID can later be used to add it as value to an
annotation feature (see Section 2.5.3, “Annotation Features” [11]).

• confidence - Specifies the confidence value of this rule. If you have more than one rule
that describes the same complex entity you can classify the rules with a confidence value.
This confidence value can later be used to add it as value to an annotation feature (see
Section 2.5.3, “Annotation Features” [11]).

• featurePath - Specifies the feature path that should be used to match the regular
expression pattern. If a feature path is specified, the feature path value is used to match
against the regular expression instead of the match type annotation span. The defined feature
path must be valid for the specified match type annotation type. The feature path elements
are separated by "/".

The listing below shows how to match a regular expression on the normalizedText
feature of a uima.TokenAnnotation. So in this case, not the covered text of
the uima.TokenAnnotation is used to match the regular expression but the
normalizedText feature value of the annotation. The normalizedText feature must be
defined in the UIMA type system as feature of type uima.TokenAnnotation.

<rule regEx="TestRegex" matchStrategy="matchAll"
 matchType="uima.TokenAnnotation" featurePath="normalizedText">
</rule>

2.4.1. Match Type Filter

<matchTypeFilter>
 <feature featurePath="language">en</feature>
</matchTypeFilter>

Match type filters can be used to filter the match type annotations that are used for matching the
regular expression pattern. For example to use a rule only when the document language is English,
as shown in the example above. Match type filters ever relate to the matchType that was specified
for the rule.

The <matchTypeFilter> element can contain an arbitrary amount of <feature> elements that
contains the filter information. But all specified <feature> elements have to be valid for the
matchType annotation of the rule.

The feature path that should be used as filter is specified using the featurePath feature of the
<feature> element. Feature path elements are separated by "/" e.g. my/feature/path. The specified
feature path must be valid for the matchType annotation. The content of the <feature> element
contains the regular expression pattern that is used as filter. To pass the filter, this pattern have to
match the feature path value that is resolved using the match type annotation. In the example above
the match type annotation has a UIMA feature called language that have to have the content en.
If that is true, the annotation passed the filter condition.

2.4.2. Update Match Type Annotations With Additional
Features

<updateMatchTypeAnnotation>
 <setFeature name="language" type="String">$0</setFeature>

Rule exception

8 Concepts Configuration File UIMA Version 2.3.1

</updateMatchTypeAnnotation>

With the <updateMatchTypeAnnotation> construct it is possible to update or set a
UIMA feature value for the match type annotation in case a rule match was found. The
<updateMatchTypeAnnotation> element can have an arbitrary amount of <setFeature>
elements that contains the feature information that should be updated.

The <setFeature> element has two mandatory features, these are:

• name - Specifies the UIMA feature name that should be set. The feature have to be available
at the matchType annotation of the rule.

• type - Specifies the UIMA feature type that is defined in the UIMA type system for this
feature. Currently supported feature types are String, Integer and Float.

The optional features are:

• normalization - Specifies the normalization that should be performed before the feature
value is assigned to the match type annotation. For a list of all built-in normalization
functions please refer to Section 2.5.3.2, “Features Value Normalization” [12].

• class - Specifies the custom normalization class that should be used to
normalize the feature value before it is assigned to the match type annotation.
Custom normalization classes are used if the normalization feature
has the value Custom. The normalization class have to implement the
org.apache.uima.annotator.regex.extension.Normalization interface. For
details about the feature normalization please refer to Section 2.5.3.2, “Features Value
Normalization” [12].

The content of the <setFeature> element definition contains the feature value that should be set.
This can either be a literal value or a regular expression capturing group as shown in the example
above. A combination of capturing groups and literals is also possible.

2.4.3. Rule exception

<ruleExceptions>
 <exception matchType="uima.tcas.DocumentAnnotation">
 ExceptionPattern
 </exception>
</ruleExceptions>

With the <ruleExceptions> construct it is possible to configure exceptions to prevent matches
for the rule. An exception is something similar to a filter, but on the higher level. For example take
the scenario where you have several token annotations that are covered by a sentence annotation.
You have written a rule that can detect car brands. The text you analyze has the sentence "Henry
Ford was born 1863". When analyzing the text you will get a car brand annotation since "Ford" is a
car brand. But is this the correct behavior? The work around that issue you can create an exception
that looks like

<ruleExceptions>
 <exception matchType="uima.SentenceAnnotation">Henry</exception>
</ruleExceptions>

and add it to your car brand rule. After adding this, car brand annotations are only created if the
sentence annotation that covers the token annotation does not contain the word "Henry".

Annotation Creation

UIMA Version 2.3.1 Concepts Configuration File 9

The <ruleExceptions> element can have an arbitrary amount of <exception> elements to
specify rule exceptions.

The <exception> element has one mandatory feature called matchType. The matchType
feature specifies the annotation type the exception is based on. The concrete exception match type
annotation that is used during the runtime is evaluated for each match type annotation that is used
to match a rule. As exception annotation always the covering annotation of the current match type
annotation is used. If no covering annotation instance of the exception match type was found the
exception is not evaluated.

The content of the <exception> element specifies the regular expression that is used to evaluate
the exception.

If the exception match is true, the current match type annotation is filtered out and is not used to
create any matches and annotations.

2.5. Annotation Creation
This paragraph explains in detail how to create annotations if a rule has matched some input text.
An annotation creation example with all possible settings is shown in the listing below.

<annotation id="testannot" type="org.apache.uima.TestAnnot"
 validate="CustomValidatorClass">
 <begin group="0" location="start"/>
 <end group="0" location="end"/>
 <setFeature name="testFeature1" type="String">$0</setFeature>
 <setFeature name="testFeature2" type="String"
 normalization="ToLowerCase">$0</setFeature>
 <setFeature name="testFeature3" type="Integer">$1</setFeature>
 <setFeature name="testFeature4" type="Float">$2</setFeature>
 <setFeature name="testFeature5" type="Reference">testannot1</setFeature>
 <setFeature name="confidenceValue" type="Confidence"/>
 <setFeature name="ruleId" type="RuleId"/>
 <setFeature name="normalizedText" type="String"
 normalization="Custom"
 class="org.apache.CustomNormalizer">$0</setFeature>
</annotation>

The <annotation> element has two mandatory features, these are:

• id - Specifies the annotation id for this annotation. If the annotation id is specified, it must
be unique within the same concept. An annotation id is required if the annotation is referred
by another annotation or if the annotation itself refers other annotations using a Reference
feature.

• type - Specifies the UIMA annotation type that is used if an annotation is created. The used
type have to be defined in the UIMA type system.

The optional features are:

• validate - Specifies the custom validator class that is used to validate matches before they
are added as annotation to the CAS. For more details about the custom annotation validation,
please refer to Section 2.5.2, “Annotation Validation” [10].

The mandatory sub elements of the <annotation> element are:

Annotation Boundaries

10 Concepts Configuration File UIMA Version 2.3.1

• <begin> - Specifies the begin position of the annotation that is created. For details about the
<begin> element, please refer to Section 2.5.1, “Annotation Boundaries” [10].

• <end> - Specifies the end position of the annotation that is created. For details about the
<end> element, please refer to Section 2.5.1, “Annotation Boundaries” [10].

The optional sub elements of the <annotation> element are:

• <setFeature> - set a UIMA feature for the created annotation. For details about the
<setFeature> element, please refer to Section 2.5.3, “Annotation Features” [11]

2.5.1. Annotation Boundaries
When creating an annotation with the <annotation> element it is also necessary to define the
annotations boundaries. The annotation boundaries are defined using the sub elements <begin>
and <end>. The start position of the annotation is defined using the <begin> element, the end
position using the <end> element. Both elements have the same features as shown below:

• group - identifies the capturing group number within the regular expression pattern for the
current rule. The value is a positive number where 0 denotes the whole match, 1 the first
capturing group, 2 the second one, and so on.

• location - indicates a position inside the capturing group, which can either be the
position of the left parenthesis in case of a value start, or the right parenthesis in case of
a value end. The location feature is optional. By default the <begin> element is set to
location="start" and the <end> element to location="end".

Note: When the rule definition defines a featurePath for a matchType, the annotation
boundaries for the created annotation are automatically set to the annotation boundaries of
the match input annotation. This must be done since the matching with a feature value of
an annotation has no relation to the document text, so the only relation is the annotation
where the feature is defined.

2.5.2. Annotation Validation
The custom annotation validation can be used to validate a regular expression match by using
some java code before the match is added as annotation to the CAS. For example if your regular
expression detects an ISBN number you can use the custom validation code to check if it is really
an ISBN number by calculating the last check digit or if it is just a phone number.

To use the custom annotation validation you have to specify the validation class at the
validate feature of the <annotation> element. The validation class must implement the
org.apache.uima.annotator.regex.extension.Validation interface (Appendix B,
Validation Interface [21]). The interface defines one method called validate(String
coveredText, String ruleID). The validate method is called by the annotator before the
match is added as annotation to the CAS. Annotations are only added if the validate method returns
true, otherwise the match is skipped. The coveredText parameter contains the text that matches
the regular expression. The ruleID parameter contains the ruldId of the rule that creates the match.
This can also be null if no ruleID was specified. The listing below shows a sample implementation
of the validation interface.

package org.apache.uima.annotator.regex;

public class SampleValidator implements
 org.apache.uima.annotator.regex.extension.Validation {

Annotation Features

UIMA Version 2.3.1 Concepts Configuration File 11

 /* (non-Javadoc)
 * @see org.apache.uima.annotator.regex.extension.Validation
 * #validate(java.lang.String, java.lang.String)
 */
 public boolean validate(String coveredText, String ruleID)
 throws Exception {

 //implement your custom validation, e.g. to validate ISBN numbers
 return validateISBNNumbers(coveredText);
 }
}

The configuration for this example looks like:

<annotation id="isbnNumber" type="org.apache.uima.ISBNNumber"
 validate="org.apache.uima.annotator.regex.SampleValidator">
 <begin group="0"/>
 <end group="0"/>
</annotation>

2.5.3. Annotation Features
With the <setFeature> element of <annotation> definition it is possible to set UIMA features
for the created annotation. The mandatory features for the <setFeature> element are:

• name - Specifies the UIMA feature name that should be set. The feature name have to be a
valid UIMA feature for this annotation and have to be defined in the UIMA type system.

• type - Specifies the type of the UIMA feature. For a list of all possible feature types please
refer to Section 2.5.3.1, “Features Types” [12].

The optional features are:

• normalization - Specifies the normalization that should be performed before the feature
value is assigned to the UIMA annotation. For a list of all built-in normalization functions
please refer to Section 2.5.3.2, “Features Value Normalization” [12].

• class - Specifies the custom normalization class that should be used to normalize the
feature value before it is assigned to the UIMA annotation. Custom normalization classes are
used if the normalization feature has the value Custom. The normalization class have to
implement the org.apache.uima.annotator.regex.extension.Normalization
interface. For details about the feature normalization please refer to Section 2.5.3.2,
“Features Value Normalization” [12].

The content of the <setFeature> element specifies the value of the UIMA feature that is set.
As value a literal, a capturing group or a combination of both can be used. To add the value of
a capturing group there are two ways to do it. The first notation is $ followed by the capturing
group number from 0 to 9 e.g. $0 for capturing group 0 or $7 for capturing group 7. The second
notation to get the value of a capturing group are capturing group names. If the rule contains named
capturing groups these groups can be accessed with ${matchGroupName}. For the access of
capturing groups greater than 9 capturing group names must be used. An example for capturing
group names is shown below:

To add a name to a capturing group just add the following fragment \m{groupname} in front of
the capturing group start parenthesis.

Annotation Features

12 Concepts Configuration File UIMA Version 2.3.1

<concept name="capturingGroupNames">
 <rules>
 <rule ruleId="ID1"
 regEx="My \m{groupName}(named capturing group) example"
 matchStrategy="matchAll"
 matchType="uima.tcas.DocumentAnnotation"/>
 </rules>
 <createAnnotations>
 <annotation type="org.apache.uima.TestAnnot">
 <begin group="0"/>
 <end group="0"/>
 <setFeature name="testFeature0" type="String">
 ${groupName}
 </setFeature>
 </annotation>
 </createAnnotations>
</concept>

2.5.3.1. Features Types

When setting UIMA feature for an annotation using the <setFeature> element the feature
type has to be specified according the the UIMA type system definition. The feature at the
<setFeature> element to do that is called type. The list below shows all currently supported
feature types:

• String - for uima.cas.String based UIMA features.

• Integer - for uima.cas.Integer based UIMA features.

• Float - for uima.cas.Float based UIMA features.

• Reference - to link a UIMA feature to another annotation. In this case the UIMA feature
type have to be the same as the referred annotation type. To reference another annotation
instance the <setFeature> content must have the annotation id as value of the referred
annotation. The referred annotation instance is the created annotation of the current match.

• Confidence - to add the value of the confidence feature defined at the <rule> element
to this feature. The UIMA feature have to be of type uima.cas.Float.

• RuleId - to add the value of the ruleId feature defined at the <rule> element to this
feature. The UIMA feature have to be of type uima.cas.String.

Note: Float and Integer based feature values are converted using the Java NumberFormat
for the current Java default locale. If the feature value cannot be converted the feature
value is not set and a warning is written to the log. To prevent these warnings it may be
useful to do a custom normalization of the numbers before they are added to the feature.

2.5.3.2. Features Value Normalization

Before assigning a feature value to an annotation it is possible to do a normalization on the feature
value. This normalization can be useful for example to normalize a detected email addresses to
lower case before it is added to the annotation. To normalize a feature value the normalization
feature of the <setFeature> element is used. The built-in normalization functions are listed
below. Additionally the RegexAnnotator provides an extension point that can be implemented to
add a custom normalization.

Annotation Features

UIMA Version 2.3.1 Concepts Configuration File 13

The possible build-in functions that are specified as feature value of the normalization feature
are listed below:

• ToLowerCase - normalize the feature value to lower case before it is assigned to the
annotation.

• ToUpperCase - normalize the feature value to upper case before it is assigned to the
annotation.

• Trim - remove all leading and trailing whitespace characters from the feature value before it
is assigned to the annotation.

Built-in normalization configuration:

<setFeature name="normalizedFeature" type="String"
 normalization="ToLowerCase">$0</setFeature>

In case of a custom normalization, the normalization feature must have the value
Custom, and an additional feature of the <setFeature> element called class have
to be specified containing the full qualified class name of the custom normalization
implementation. The custom normalization implementation have to implement the interface
org.apache.uima.annotator.regex.extension.Normalization (Appendix C,
Normalization Interface [23]) which defines the normalize method to normalize the feature
values. A sample implementation with the corresponding configuration is shown below.

Custom normalization implementation:

package org.apache.uima;

public class CustomNormalizer
 implements org.apache.uima.annotator.regex.extension.Normalization {

 /* (non-Javadoc)
 * @see org.apache.uima.annotator.regex.extension.Normalization
 * #normalize(java.lang.String, java.lang.String)
 */
 public String normalize(String input, String ruleId) {

 //implement your custom normalization
 String result = ...
 return result;
 }

Custom normalization configuration:

<setFeature name="normalizedFeature" type="String"
 normalization="Custom" class="org.apache.uima.CustomNormalizer">
 $0
</setFeature>

Annotator Descriptor 15

Chapter 3. Annotator Descriptor
The RegexAnnotator analysis engine descriptor contains some processing information for the
annotator. The processing information is specified as configuration parameters. This chapter we
explain in detail the possible descriptor settings.

3.1. Configuration Parameters
The RegexAnnotator has the following configuration parameters:

• ConceptFiles - This parameter is modeled as array of Strings and contains the concept
files the annotator should use. The concept files must be specified using a relative path that
is available in the UIMA datapath or in the classpath. When you use the UIMA datapath,
you can use wildcard expressions such as rules/*.rule. These kinds of wildcard
expressions will not work when rule files are discovered via the classpath.

<nameValuePair>
 <name>ConceptFiles</name>
 <value>
 <array>
 <string>subdir/myConcepts.xml</string>
 <string>SampleConcept.xml</string>
 </array>
 </value>
</nameValuePair>

3.2. Capabilities
In the capabilities section of the RegexAnnotator descriptor the input and output capabilities and
the supported languages have to be defined.

The input capabilities defined in the descriptor have to comply with the match types used in the
concept rule file that is used. For example the uima.SentenceAnnotation used in the rule
below have to be added to the input capability section in the RegexAnnotator descriptor.

<rules>
 <rule regEx="SampleRegex" matchStrategy="matchAll"
 matchType="uima.SentenceAnnotation"/>
</rules>

In the output section, all of the annotation types and features created by the RegexAnnotator have
to be specified. These have to match the output types and features declared in the <annotation>
elements of the concept file. For example the org.apache.uima.TestAnnot annotation and
the org.apache.uima.TestAnnot:testFeature feature used below have to be added to the
output capability section in the RegexAnnotator descriptor.

<createAnnotations>
 <annotation type="org.apache.uima.TestAnnot">
 <begin group="0"/>
 <end group="0"/>
 <setFeature name="testFeature" type="String">$0</setFeature>
 </annotation>
</createAnnotations>

Capabilities

16 Annotator Descriptor UIMA Version 2.3.1

If there are any language dependent rules in the concept file the languages abbreviations have to
be specified in the <languagesSupported>element. If there are no language dependent rules
available you can specify x-unspecified as language. That means that the annotator can work on
all languages.

For the short examples used above the capabilities section in the RegexAnnotator descriptor looks
like:

<capabilities>
 <capability>
 <inputs>
 <type>uima.SentenceAnnotation</type>
 </inputs>
 <outputs>
 <type>org.apache.uima.TestAnnot</type>
 <feature>org.apache.uima.TestAnnot:testFeature</feature>
 </outputs>
 <languagesSupported>
 <language>x-unspecified</language>
 </languagesSupported>
 </capability>
</capabilities>

Concept File Schema 17

Appendix A. Concept File Schema
The concept file schema that is used to define the concept file looks like:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://incubator.apache.org/uima/regex"
 xmlns="http://incubator.apache.org/uima/regex"
 elementFormDefault="qualified">
 <!--
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 -->

 <xs:element name="conceptSet">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="concept" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="concept">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="rules" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="createAnnotations" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="createAnnotations">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="annotation" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="rules">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="rule" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

18 Concept File Schema UIMA Version 2.3.1

 <xs:element name="rule">
 <xs:complexType>
 <xs:all>
 <xs:element ref="matchTypeFilter" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="updateMatchTypeAnnotation" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="ruleExceptions" minOccurs="0" maxOccurs="1"/>
 </xs:all>
 <xs:attribute name="regEx" type="xs:string" use="required"/>
 <xs:attribute name="matchStrategy" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="matchFirst"/>
 <xs:enumeration value="matchAll"/>
 <xs:enumeration value="matchComplete"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="matchType" type="xs:string" use="required"/>
 <xs:attribute name="featurePath" type="xs:string" use="optional" />
 <xs:attribute name="ruleId" type="xs:string" use="optional"/>
 <xs:attribute name="confidence" type="xs:decimal" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="matchTypeFilter">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="feature" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="ruleExceptions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="exception" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="exception">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="matchType" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 <xs:element name="feature">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="featurePath" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 <xs:element name="annotation">

UIMA Version 2.3.1 Concept File Schema 19

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="begin" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="end" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="setFeature" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="optional"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="validate" type="xs:string" use="optional" />
 </xs:complexType>
 </xs:element>

 <xs:element name="updateMatchTypeAnnotation">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="setFeature" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="begin">
 <xs:complexType>
 <xs:attribute name="group" use="required" type="xs:integer"/>
 <xs:attribute name="location" use="optional" default="start">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="start"/>
 <xs:enumeration value="end"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name="end">
 <xs:complexType>
 <xs:attribute name="group" use="required" type="xs:integer"/>
 <xs:attribute name="location" use="optional" default="end">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="start"/>
 <xs:enumeration value="end"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name="setFeature">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="String"/>
 <xs:enumeration value="Integer"/>
 <xs:enumeration value="Float"/>
 <xs:enumeration value="Reference"/>
 <xs:enumeration value="Confidence"/>
 <xs:enumeration value="RuleId"/>

20 Concept File Schema UIMA Version 2.3.1

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="normalization" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Custom" />
 <xs:enumeration value="ToLowerCase" />
 <xs:enumeration value="ToUpperCase" />
 <xs:enumeration value="Trim" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="class" type="xs:string" use="optional" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

Validation Interface 21

Appendix B. Validation Interface
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.uima.annotator.regex.extension;

/**
 * The Validation interface is provided to implement a custom validator
 * that can be used to validate regular expression matches before
 * they are added as annotations.
 */
public interface Validation {

/**
 * The validate method validates the covered text of an annotator and
 * returns true or false whether the annotation is correct or not.
 * The validate method is called between a rule match and the
 * annotation creation. The annotation is only created if the method
 * returns true.
 *
 * @param coveredText covered text of the annotation that should be
 * validated
 * @param ruleID ruleID of the rule which created the match
 *
 * @return true if the annotation is valid or false if the annotation
 * is invalid
 *
 * @throws Exception throws an exception if an validation error occurred
 */
public boolean validate(String coveredText, String ruleID)
 throws Exception;

}

Normalization Interface 23

Appendix C. Normalization Interface
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.uima.annotator.regex.extension;

/**
 * The Normalization interface was add to implement a custom normalization
 * for feature values before they are assigned to an anntoation.
 */
public interface Normalization {

/**
 * Custom feature value normalization. This interface must be implemented
 * to perform a custom normalization on the given input string.
 *
 * @param input input string which should be normalized
 *
 * @param ruleID rule ID of the matching rule
 *
 * @return String - normalized input string
 */
public String normalize(String input, String ruleID) throws Exception;
}

	Apache UIMA Regular Expression Annotator Documentation
	Table of Contents
	Introduction
	Chapter 1. Processing Overview
	Chapter 2. Concepts Configuration File
	2.1. RuleSet definition
	2.2. Concept definition
	2.3. Regex Variables
	2.4. Rule Definition
	2.4.1. Match Type Filter
	2.4.2. Update Match Type Annotations With Additional Features
	2.4.3. Rule exception

	2.5. Annotation Creation
	2.5.1. Annotation Boundaries
	2.5.2. Annotation Validation
	2.5.3. Annotation Features
	2.5.3.1. Features Types
	2.5.3.2. Features Value Normalization

	Chapter 3. Annotator Descriptor
	3.1. Configuration Parameters
	3.2. Capabilities

	Appendix A. Concept File Schema
	Appendix B. Validation Interface
	Appendix C. Normalization Interface

