
CFE User Guide
Written and maintained by the Apache UIMA Development Community

Version 2.3.1

Copyright © 2006, 2011 The Apache Software Foundation

License and Disclaimer. The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2011

http://www.apache.org/licenses/LICENSE-2.0

CFE User Guide iii

Table of Contents
1. Overview .. 1

1.1. Motivation .. 1
1.2. Approaches to feature extraction ... 2

1.2.1. Custom CAS Consumers .. 2
1.2.2. CFE approach ... 2

1.3. CFE Basics ... 3
2. Components .. 5

2.1. FESL XSD ... 5
2.2. Source Code ... 5
2.3. Descriptors ... 5
2.4. Type Dependencies .. 5

3. Configuration Files ... 7
3.1. Common notations and tags .. 7

3.1.1. Feature path ... 7
3.1.2. Full path and partial path ... 7
3.1.3. TAM and FAM .. 7
3.1.4. Arrays ... 8
3.1.5. Parent tag ... 8
3.1.6. Null values ... 9
3.1.7. Implicit TA exclusion .. 9

3.2. FESL Elements ... 9
3.2.1. BitsetFeatureValuesXML ... 9
3.2.2. EnumFeatureValuesXML ... 10
3.2.3. ObjectPathFeatureValuesXML .. 11
3.2.4. PatternFeatureValuesXML .. 11
3.2.5. RangeFeatureValuesXML ... 11
3.2.6. SingleFeatureMatcherXML ... 12
3.2.7. GroupFeatureMatcherXML ... 13
3.2.8. PartialObjectMatcherXML .. 14
3.2.9. FeatureObjectMatcherXML .. 16
3.2.10. TargetAntotationXML .. 18

3.3. Configuration file sample .. 19
3.3.1. Task definition .. 19
3.3.2. Implementation ... 19

4. Using CFE for evaluation .. 25

Overview 1

Chapter 1. Overview

1.1. Motivation
Feature extraction, the extraction of information from data sources, is a common task frequently
required to be performed by many different types of applications, such as machine learning,
performance evaluation, and statistical analysis. This guide describes a tool that can be used to
facilitate this extraction process, in conjunction with the Unstructured Information Management
Architecture (UIMA), particularly focusing on text processing applications. UIMA provides a
mechanism for executing modules called Analysis Engines that analyze artifacts (text documents
in our case) and store the results of the analysis in a data structure called the Common Analysis
Structure (CAS). These results are stored as Feature Structures, which are simply data structures
that have an associated type and a set of properties in the form of attribute/value pairs. Feature
Structures that are attached to a particular span of a text document are called Annotations. They
usually represent a concept that the analysis engine computes based on the text. The attributes are
called Features in UIMA terminology. This sense of feature will always be referred to as UIMA
feature in this document, so as not to be confused with the general sense of feature when
discussing feature extraction, referring to the process of extracting values from data sources
(in our case, the CAS). Values that are extracted are not required to be values of attributes (i.e.,
UIMA Features) of Annotations, but can be computed by other methods, as will be shown later.
The terms features and feature values in this document refer to any value extracted from the
CAS, regardless of the particular source.

As an example, Figure 1 depicts annotation objects of the type Token that are associated with
individual words, each having attributes Index and POS (part of speech). A feature extraction
task could be "extract token indexes for the words that are nouns". Such a task is translated to the
following execution steps:

1. find an annotation of a type Token

2. examine the value of POS attribute

3. extract the value of Index attribute only if the value of POS attribute is NN

The expression "word that is a noun" defines a concept, and its implementation is that it has to be
found in the CAS. Token index is the information (i.e., feature) to be extracted. The resulting
values for the task will be values 3 and 9, which are the values of the attribute Index for the words
car and finish.

Figure 1: Annotated text sample

Approaches to feature extraction

2 Overview UIMA Version 2.3.1

While Figure 1 shows a fairly simple example of annotations types associated with some text,
real world applications could have quite sophisticated annotation types, storing various kinds of
computed information. Consider an annotation type Car that has, for illustration purposes, just two
attributes: Color and Engine. While the attribute Color is of type string, the Engine attribute is
a complex annotation type with attributes Cylinders and Size. This is represented by a UML
diagram in Figure 2, illustrating a class hierarchy on the left and sample instance of this class
structure on the right.

Figure 2: Composite object sample

If a requirement is to extract the number of cylinders of the car's engine, then the application
needs to find any object(s) that represent the concept of a car (CarAnnotation in this case) and
traverse the object's structure to access the Cylinders attribute of EngineAnnotation. Once the
attribute's value is accessed, the application outputs it to the desired destination, such as a text file
or a database.

1.2. Approaches to feature extraction

1.2.1. Custom CAS Consumers
When working with UIMA, feature extraction is usually implemented by writing a special UIMA
component called a CAS Consumer that contains custom code for accessing the annotations and
their attributes, outputting them to a file, memory or database as required. The CAS consumer
contains explicit logic for traversing the object's structure and examining values of specific
attributes. Also, the CAS consumer would likely have code for outputting the accessed values
to a particular destination, as required by the application. Writing CAS consumers can be labor
intensive and requires Java programming. While this approach allows powerful control and
customization to an application's needs, supporting the code can become problematic, especially as
application requirements change. This can have a negative effect on many different aspects of code
support, such as maintenance, evolution, bug fixing, reusability etc.

1.2.2. CFE approach

CFE is a multipurpose tool that enables feature extraction from a UIMA CAS in a very generalized
and application independent way. The extraction process is performed according to rules expressed
using the Feature Extraction Specification Language (FESL) that are stored in configuration
files. Using CFE eliminates the need for creating customized CAS consumers and writing Java
code for every application. Instead, by using FESL rules in XML format, users can customize the

CFE Basics

UIMA Version 2.3.1 Overview 3

information extraction process to suit their application. FESL's rule semantics allow the precise
identification of the information that is required to be extracted by specifying precise multi-
parameter criteria. The FESL syntax and semantics are defined further in this guide.

1.3. CFE Basics
The feature extraction process involves three major steps:

1. locating a concept of interest that is represented by a UIMA annotation object; examples of
such concepts could be "word that is a noun" or "a car that has a six cylinder engine" etc.
The annotation object that represents such a concept is referred to as the Target Annotation
(TA)

2. locating concepts, relative to the TAs, specifying the information to extract. These are also
represented by UIMA annotations, that are within some context of the TAs. Some examples
of context could be "to the left of the TA" or "within the TA" etc. The annotation object that
corresponds to such a concept is referred to as the Feature Annotation (FA). In relation to
Figure 1, an example FA could be the expression "two words to the left from word finish
that is a noun", assuming that "word finish that is a noun", describes the TA. The result of
such a specification will be tokens at and the

3. extraction of the specified information from FAs

 Just to illustrate the process, suppose the requirement is "to extract indexes of two words to the
left of the word finish that is a noun". In such a scenario, in the first step, CFE locates a TA that is
represented by an annotation object corresponding to a word finish and also has its POS attribute
equal to NN. For the second step, FAs that correspond to two words to the left from TA are located.
On the third step, values of the Index attribute for each of FAs that were found are extracted. It
is possible, however, that the requirement is to extract the value of the Index attribute from the
annotation for the word finish itself. In such a case, the TA and FA are represented by the same
UIMA annotation object. This is usually the case when extracting features for evaluation or testing.
The specification for a TA or FA can be specified by complex multi-parameter conditions that are
also expressed using FESL, as will be shown later.

Components 5

Chapter 2. Components

2.1. FESL XSD
The specification for FESL is written in XSD format and stored in the file <CFE_HOME>/
src/main/xsdForEmf/CFEConfigModel.xsd to be used by EMF-based parser generator and in
<CFE_HOME>/src/main/xsdForXMLBeans for XMLBeans parser generator). Using this XSD in
conjunction with an XML editor that provides syntax validation can help to provide more efficient
editing of FESL configuration files.

2.2. Source Code
CFE is implemented in Java 5.0 for Apache UIMA, and resides in the org.apache.uima.tools.cfe
package. CFE is dependent on Eclipse EMF, Apache UIMA, and the Apache XMLBeans
and JXPath libraries. The source code contains the complete implementation of CFE,
including auxiliary utility classes that wrap some UIMA functionality (located in
org.apache.uima.tools.cfe.support package)

2.3. Descriptors
A sample descriptor file that defines a type system for machine learning processing is located in
<CFE_HOME>src/main/resources/descriptors/type_system/AppliedSenseAnnotation.xml

A sample descriptor that uses CFE in a CAS Consumer is located in <CFE_HOME>src/main/
resources/descriptors/cas_consumers/UIMAFeatureConsumer.xml

2.4. Type Dependencies
CFE code uses UIMA example annotation type
org.apache.uima.examples.SourceDocumentInformation to retrieve the name of
a document that is being processed. Typically, annotations of this type are produces by a file
collection reader, provided by UIMA examples. If a UIMA application uses a different type of
a reader, an annotation of this type should be created and initialized for each document prior
to execution of TAE. Please see <CFE_HOME>src/test/java/org/apache/uima/tools/cfe/test/
CFEtest.java for an example.

Configuration Files 7

Chapter 3. Configuration Files

3.1. Common notations and tags
CFE configuration files are written using FESL semantic rules, as defined in CFEConfig.xsd. These
rules describe the information extraction process and are independent of the application from which
the information is to be extracted. There are several common notations and tags that are used in
different elements of FESL

3.1.1. Feature path
A "feature path" is a mechanism used by FESL to identify a particular feature (not necessarily a
UIMA feature) of an annotation. The value associated with the feature, indicated by the feature
path, can be either evaluated to match a certain criteria or extracted to the final output or both.
The syntax of a feature path is an indexed sequence of attribute/method names separated by the
colon character. Such a sequence mimics the sequence of Java method calls required to extract
the feature value. For example, a value of the EngineAnnotation attribute Cylinders from
Figure 2 can be written as CarAnnotation:Engine:Cylinders, where Engine is an attribute of
CarAnnotation. The intermediate results of each step of the call sequence can be referred from
different FESL structural elements by their zero-based index. For instance, the Parent Tag notation
(see below) uses the index to access intermediate values. The feature path can be used to identify
feature values that are either primitives or complex object types.

3.1.2. Full path and partial path
There are two different ways of using feature path notation to identify an object: full path and
partial path. The object can be one of the following:

• an annotation

• value of an annotation's attribute

• value of a result of an annotation's method; only get-style methods (methods that return a
value and take no parameters) are supported.

A full path specifies a path to an object starting from its type. For instance, if EngineAnnotation
is specified as a full path, it would refer to all instances of annotations of that type.
If CarAnnotation:Engine is specified, it would refer only to instances of the
EngineAnnotation type that are attributes of instances of the CarAnnotation type. Full path
notation is usually used for TA or FA identification.

A partial path specifies a path to an object starting from a previously located annotation object
(whether TA or FA). For example, if an instance of CarAnnotation is located as a TA, then
the size of its engine can be specified as Engine:Size. Partial path notation is usually used for
specification of feature values that are being examined or extracted. The distinction between "full
path" and "partial path" is very similar to the concepts of "absolute path" and "relative path" when
discussing a computer's file system.

3.1.3. TAM and FAM
Each FESL rule is represented by a1 XML element with the tag targetAnnotation , as specified
in the XSD by the TargetAnnotationXML type. Each element of this type is a composition of:

Arrays

8 Configuration Files UIMA Version 2.3.1

• a single target annotation matcher (TAM) that is denoted by an XML element with the tag
targetAnnotationMatcher , of the type PartialObjectMatcherXML

• optional feature annotation matchers (FAM) denoted by XML elements with the tag
featureAnnotationMatchers, of the type FeatureObjectMatcherXML

The TAM specifies search criteria for locating Target Annotations (TA s), while FAM s contain
criteria for locating Feature Annotations (FA s) and the specification of features for extraction from
the FA s. The criteria for the search and the features to be extracted are specified using the feature
path notation, as explained earlier. The XML tags representing the matchers are detailed below.

3.1.4. Arrays
Since UIMA annotations may have arrays as attributes, FESL provides the ability to perform
feature extraction from array objects. In particular, going back to Figure 2, if the implementation
for the Wheels attribute is a UIMA FSArray type, then using feature path notation:

• the feature value for the Wheels attribute of FSArray type can be specified as
CarAnnotation:Wheels.

• the feature value for the number of elements in the FSArray can be specified as
CarAnnotation:Wheels:size, where size is a method of FSArray ; such value
corresponds to a concept of how many wheels the car has.

• the feature values for individual elements of Wheels attribute of type WheelAnnotation
can be accessed as CarAnnotation:Wheels:toArray. It should be noted that toArray is
a name of a method of the FSArray type rather than a name of an attribute.

• the feature values for Diameter attribute of each WheelAnnotation can be specified as
CarAnnotation:Wheels:toArray:Diameter

The result of using toArray as an accessor is an array of values. FESL also provides syntax for
accessing individual elements of arrays by index.

• the feature for the diameter of the first wheel can be specified as
CarAnnotation:Wheels:toArray[0]:Diameter

• the feature for the diameter of the first and second wheels can be specified as
CarAnnotation:Wheels:toArray[0][1]:Diameter

• the feature for the diameter of first three wheels can be specified as
CarAnnotation:Wheels:toArray[0-2]:Diameter

The specification of individual elements can be mixed for example:
CarAnnotation:Wheels:toArray[0][2-3]:Diameter refers to all elements of Wheels
attribute except the second. If the index specified falls outside the range of the matched data, a null
value will be assigned.

If required, FESL allows sorting extracted features by an offset in the
text of the annotations that these features are extracted from. For instance
CarAnnotation:Wheels:toArray[sort]:Diameter would ensure such an order.

3.1.5. Parent tag
The parent tag is used to access a specific element of a feature path of a TA or FA by index. If a
parent tag is used within a TAM specification, it is applied to the full path of the corresponding

Null values

UIMA Version 2.3.1 Configuration Files 9

TA. Likewise, parent tags contained in FAMs are applied to the full a path of the corresponding
FA. The tag consists of __p prefix followed by the index of an element that is being accessed.
For instance, __p0 addresses the first element of a feature path. The tag can be a part of a feature
path. For example, if a TA is specified as CarAnnotation:Wheels:toArray, corresponding to
a concept of "wheels of a car" then the value of the Color attribute of a CarAnnotation object
can be accessed by specifying __p0:Color. Such a specification can be used when it is required
to examine/extract features of a containing annotation along with features of contained annotations.
Samples of using parent tags are provided in the sections that detail FESL syntax, below.

3.1.6. Null values

CFE allows comparing feature values for equality to null. The root XML element CFEConfig has
a string attribute nullValueImage that sets a literal representation of a null value. If an extracted
feature value is null, it will be converted to a string that is assigned the nullValueImage attribute.
The example below illustrates the usage of this attribute.

3.1.7. Implicit TA exclusion

While all FAM specifications for a single TAM are independent from each other, there is an
implicit dependency between TAMs. In particular, they are dependent on the order in which
they are specified in a configuration file. Annotations corresponding to certain concepts that
were identified by a TAM that appear earlier in the configuration file will be excluded from
further processing by FESL. This rule only applies to TAMs that use the fullPath attribute
in their specification (see PartialObjectMatcherXML). Having the implicit exclusion
helps to separate the processing of same type annotations in the case when these annotations
have different semantic meaning. For instance, the set of features that is required to be extracted
from annotations of type EngineAnnotation that are attributes of CarAnnotation objects
can be different than a set of features that is required to be extracted from annotations of the
same EngineAnnotation type that are attributes of some other type or are not attached to
any annotations of other types. To implement such a behavior in FESL, the fist TAM would
contain criteria for locating EngineAnnotation objects that are attached to objects of the
CarAnnotation type, while the second TAM would not specify any restriction on containment of
objects of the EngineAnnotation type. If such a specification is given, all EngineAnnotation
objects located according to the rule in the first TAM will be excluded from further processing and,
hence, will not be available for processing by rules given in the second TAM

3.2. FESL Elements
FESL's XSD defines several elements that allow specify rules for feature extraction. These
elements may contains attributes and other elements in their definition

3.2.1. BitsetFeatureValuesXML

• Attribute: bitmask[1]: Integer

• Attribute: exact_match[0..1]: boolean: default false

EnumFeatureValuesXML

10 Configuration Files UIMA Version 2.3.1

The specification enables comparing a feature value to an integer bitmask. The feature value is
considered to be matched if it is of an Integer type and:

• if the exact_match attribute is set to true and all "1" bits specified in bitmask are also set in
feature value

• if the exact_match attribute is set to false and any of "1" bits specified in bitmask is also
set in feature value

Example:

<bitsetFeatureValues bitmask="3" exact_match="false" />

<bitsetFeatureValues bitmask="3" exact_match="true" />

The first line of the example specifies a test whether either of the two less significant bits of
a feature value is set. To be successful, the test specified by the second line requires both less
significant bits to be set.

3.2.2. EnumFeatureValuesXML
• Attribute: caseSensitive[0..1]: boolean: default false

• Element: values[0..*]: String

EnumFeatureValuesXML element allow to test if a feature value belongs to a finite set of
values. According to EnumFeatureValuesXML specification, if a feature value is equal to either
one of the elements of values then the feature is considered to be successfully evaluated. The
caseSensitive attribute indicates whether the comparison between the feature value and
members of the values element is case sensitive. The FESL fragment below shows how to specify
such a comparison:

<enumFeatureValues caseSensitive="true">

<values>red</values>

<values>green</values>

<values>blue</values>

</enumFeatureValues>

This fragment specifies a case sensitive comparison of a feature value to a set of strings: red,
green and blue.

Special processing occurs when the array has only a single element that starts with file://,
enabling the use of external dictionaries for comparison. In this case, the text within the values
element is treated as a URI. The contents of the file referenced by the URI will be loaded and
used as a set of values against which the feature value is going to be tested. The file should
contain one dictionary entry per line, with each line starting with the # character considered
to be a comment and thus will not be loaded. The dictionary handling is implemented in
org.apache.uima.tools.cfe.EnumeratedEntryDictionary. The default implementation supports single

ObjectPathFeatureValuesXML

UIMA Version 2.3.1 Configuration Files 11

token (whitespace separated) dictionary entries. If a more sophisticated dictionary format is desired,
then either the constructor's parameters can be changed or methods for initializing and loading the
dictionary from a file can be overridden.

3.2.3. ObjectPathFeatureValuesXML
• Attribute: objectPath[1]: String

According to ObjectPathFeatureValuesXML specification, the TA or FA itself
(depending on whether this element is in TAM or in FAM) is tested whether it is
at the location defined by the objectPath. This ability to evaluate whether a feature
belongs to some CAS object is useful specifically in the cases where a particular feature
value is the property of several different objects. For instance, this element can be used
when features from annotations should be extracted only if they are attributes of other
annotations. The FESL fragment below specifies a test that checks if an object's full path is
org.apache.uima.tools.cfe.sample.CarAnnotation:Wheels:toArray. Such a test,
for instance, can be used to check if an instance of a WheelAnnotation belongs to an instance
CarAnnotation:

<objectFeatureValues
objectPath="org.apache.uima.tools.cfe.sample.CarAnotation:Wheels:toArray"b>

3.2.4. PatternFeatureValuesXML
• Attribute: pattern[1]: String

The PatternFeatureValuesXML element enables comparing a feature value against a regular
expression specified by the pattern attribute using Java Regular Expression syntax and
considered to be successfully evaluated if the value matches the pattern.

The FESL fragment below defines a test that checks if a feature value conforms to the hex number
format:

<patternFeatureValues pattern="(0[Xx][0-9A-Fa-f]+)" />

3.2.5. RangeFeatureValuesXML
• Attribute: lowerBoundary[0..1]: Comparable: default 0

• Attribute: lowerBoundaryInclusive[0..1]: boolean default false

• Attribute: upperBoundary[0..1]: Comparable default 0

• Attribute: upperBoundaryInclusive[0..1]: boolean default false

According to RangeFeatureValuesXML specification the feature value is evaluated whether it is
of a Comparable type and belongs to the interval specified by the attributes lowerBoundary and

SingleFeatureMatcherXML

12 Configuration Files UIMA Version 2.3.1

upperBoundary. The attributes lowerBoundaryInclusive and upperBoundaryInclusive
indicate whether the corresponding boundaries should be included in the range for comparison.
FESL fragment below specifies a test that checks if feature value is in the numeric range between 1
and 5, including 1 and excluding 5:

<rangeFeatureValues lowerBoundary="1.8" upperBoundaryInclusive="true"
upperBoundary="3.0" />

3.2.6. SingleFeatureMatcherXML
• Attribute: featurePath[1]: String

• Attribute: featureTypeName[0..1]: String: no default value

• Attribute: exclude[0..1]: boolean: default false

• Attribute: quiet[0..1]: boolean: default false

• Element: featureValues one of:

• bitsetFeatureValues: BitsetFeatureValuesXML

• enumFeatureValues: EnumFeatureValuesXML

• objectPathFeatureValues: ObjectPathFeatureValuesXML

• patternFeatureValues: PatternFeatureValuesXML

• rangeFeatureValues: RangeFeatureValuesXML

The SingleFeatureMatcherXML defines rules for matching of a feature value to the
featureValues element. The featureValues can be one of the elements in the bullet list above. The

GroupFeatureMatcherXML

UIMA Version 2.3.1 Configuration Files 13

previous section detailed rules for matching a feature value to each of these elements. According
to the specification for matching of a single feature value, first, a value of a feature denoted by
the required featurePath attribute is located. For features that have arrays in their featurePath
multiple values can be found. If such value(s) is found and optional featureTypeName attribute
specifies a type name of the feature value, every found feature value is tested to be of that type.
If the test is successful, then feature values are evaluated according to a specification given in
featureValues. After the evaluation is performed a single feature is considered to be successfully
evaluated if:

• the exclude attribute value is set to false and at least one feature value is matched to
featureValues specification.

• the exclude attribute value is set to true and none of the feature values is matched to
featureValues specification.

For SingleFeatureMatcherXML elements that are parts of TAM element only evaluation of
feature values is performed. If a SingleFeatureMatcherXML element is a part of FAM then the
feature value is output only if the quiet attribute is set to false. If the value of the quiet attribute
is set to true, then, even if the feature is matched, only an evaluation is performed, but no value is
written into the final output. A featurePath attribute uses feature path notation explained earlier.

FESL fragment below defines a test that checks if a value of the Size attribute is in a range defined
by rangeFeatureVulues element:

<featureMatchers featurePath="Size" featureTypeName="java.lang.Float">

<rangeFeatureValues lowerBoundary="1.8" upperBoundaryInclusive="true"
upperBoundary="3.0"/>

</featureMatchers>

In addition it is allowed to use the parent tag (see Parent tag) in the featurePath attribute. A
sample in the PartialObjectMatcherXML section detail on how use the parent tag notation.

3.2.7. GroupFeatureMatcherXML
• Attribute: exclude[0..1]: boolean: default false

• Element: featureMatchers[1..*]: SingleFeatureMatcherXML

This is a specification for matching a group of features. It can be applied to both types of
annotations, TAs and FAs. Each element in featureMatchers is evaluated against either a TA or a
FA annotation. The group is considered to be matched if:

PartialObjectMatcherXML

14 Configuration Files UIMA Version 2.3.1

• the exclude attribute value is set ao false and all elements in featureMatchers have
been successfully evaluated.

• the exclude attribute value is set to true and evaluation of either of the elements in
featureMatchers is unsuccessful

The FESL fragment below defines a group with the two features Color and Wheels:Size to be
matched. The entire group is to be successfully evaluated if both features are matched. The first
feature is successfully evaluated if its value is one of the values listed by its enumFeatureValues
element and the second feature is matched if its value is not in the set contained in its
enumFeatureValues element, as specified by its exclude attribute. It should be noted that if the
optional attribute featureTypeName is omitted then a feature value is assumed to be of a string
type. Otherwise a feature value's type will be evaluated if it is the same or derived from the type
specified by the featureTypeName attribute. Assuming the groupFeatureMatcher is specified
for the CarAnnotation type, the test defined by a FESL fragment below is successful is a car is
ether red, green or blue and it does not have 1 or 3 wheels:

<groupFeatureMatchers>

<featureMatchers featurePath="Color" featureTypeName="java.lang.Stting">

<enumFeatureValues caseSensitive="true">

<values>red</values>

<values>green</values>

<values>blue</values>

</enumFeatureValues>

</featureMatcher>

<featureMatchers featurePath="Wheels:Size" exclude="true">

<enumFeatureValues caseSensitive="true">

<values>1</values>

<values>3</values>

</enumFeatureValues>

</featureMatchers>

<groupFeatureMatchers>

3.2.8. PartialObjectMatcherXML

• Attribute: annotationTypeName[1]: String

• Attribute: fullPath[0..1]: String: no default value

• Element: groupFeatureMatchers[0..*]: GroupFeatureMatcherXML

PartialObjectMatcherXML

UIMA Version 2.3.1 Configuration Files 15

This is a base specification for an annotation matcher that will search annotations of a type
specified by annotationTypeName located on a path specified by fullPath. If fullPath
is omitted or just contains the type name of an annotation (same as annotationTypeName
attribute) then all instances of that type are considered for further feature value evaluation. If
fullPath contains a path to an object from an attribute of a different object, then only instances
of annotationTypeName that located on that path will be considered for further evaluation
Once an annotation is successfully evaluated to match a type/path, its features are evaluated
according to specification given in all elements of groupFeatureMatchers. If evaluation of
any groupFeatureMatchers is successful or if no groupFeatureMatchers is given, then
the annotation is considered to be successfully evaluated. The fullPath attribute should be
specified using syntax described in the feature path section above, with the exception that it can
not contain any parent tags. For instance, a specification where a value of the fullPath attribute
is CarAnnotation:Engine and a value of the annotationTypeName is EngineAnnotation
would address only engines that are car engines. PartialAnnotationMatcherXML is used to
specify search rules in TAM specifications. To illustrate the use of parent tag notation let's consider
an example where it is required to identify engines of blue cars that have a size more than 1.8 l but
not greater then 3.0 l. According to a class diagram in Figure 2, the FESL fragment below defines
rules for the task. It should be noted that the second feature matcher uses the parent tag notation to
access a value of the CarAnnotation's attribute Color:

<targetAnnotationMatcher annotationTypeName="EngineAnnotation"
fullPath="CarAnnotation:EngineAnnotation" >

<groupFeatureMatchers>

<featureMatchers featurePath="Size" featureTypeName="java.lang.Float">

<rangeFeatureValues lowerBoundary="1.8" upperBoundaryInclusive="true"
upperBoundary="3.0"/>

</featureMatchers>

<featureMatchers featurePath="__p0:Color" featureTypeName="java.lang.String"

<enumFeatureValues caseSensitive="true">

<values>red</values>

<values>green</values>

<values>blue</values>

</enumFeatureValues>

</featureMatcher>

<groupFeatureMatchers>

</targetAnnotationMatcher>

FeatureObjectMatcherXML

16 Configuration Files UIMA Version 2.3.1

3.2.9. FeatureObjectMatcherXML
extends PartialAnnotationMatcherXML

• Attribute: windowsizeLeft[0..1]: Integer: default 0

• Attribute: windowsizeInside[0..L]: Integer: default 0

• Attribute: windowsizeRight[0..1]: Integer: default 0

• Attribute: windowsizeEnclosed[0..1]: Integer: default 0

• Attribute: windowFlags[0..1]: Integer: default 0

• Attribute: orientation[0..1]: boolean: default false

• Attribute: distance[0..1]: boolean: default false

The FeatureObjectMatcherXML element contains rules that specify how
FeatureAnnotations (FA) should be located and which features should be extracted from
them. It inherits its properties from PartialObjectMatcherXML. In addition it has semantics for
specifying:

• a size of a search window

• a direction for the search relative to a corresponding Target Annotation (TA).

It is done by using boolean attributes windowsizeLeft, windowsizeInside,
windowsizeRight, windowsizeEnclosed and the bitmask windowFlags attribute that indicate
FA's search rules:

• windowsizeLeft - a size of the search window to the left from TA

• windowsizeRight - a size of the search window to the right from TA

• windowsizeInside - a size of the search window within TA boundaries; if the value of this
attribute is 1, then the TA is considered to be an FA at the same time

FeatureObjectMatcherXML

UIMA Version 2.3.1 Configuration Files 17

• windowFlags - more precise criteria for search window; the value if this attribute is a
bitmask with a combination of the following values:

a. 1 - FA starts to the left from the TA and ends to the left from the TA

b. 2 - FA starts to the left from the TA and ends inside of TA boundaries

c. 4 - FA starts to the left from the TA and ends to the right from the TA

d. 8 - FA starts inside of the TA and ends inside of the TA boundaries

e. 16 - FA starts inside of the TA boundaries and ends to the right from the TA

f. 32 - FA starts to the right from the TA and ends to the right from the TA

The location of a FA is included in the generated output according to optional orientation and
distance attributes. For example, if values of both of these attributes are set to true and the FA is a
first annotation of required type to the left from TA, then the generated feature value will start with
the prefix L1. If the values are set to false, then the feature value's prefix will be X0. This allows
generating unique feature names for model building and evaluation for machine learning.

FeatureObjectMatcherXML is used to specify search rules in FAM specifications.

The FESL fragment below adds rules to the previous sample to extract a number of cylinders from
engines of cars whose wheels diameter is at least 20.0":

<targetAnnotationMatcher annotationTypeName="EngineAnnotation"
fullPath="CarAnnotation:EngineAnnotation" >

<groupFeatureMatchers>

<featureMatchers featurePath="Size" featureTypeName="java.lang.Float">

<rangeFeatureValues lowerBoundary="1.8" upperBoundaryInclusive="true"
upperBoundary="3.0"/>

</featureMatchers>

<featureMatchers featurePath="__p0:Color" featureTypeName="java.lang.String">

<enumFeatureValues caseSensitive="true">

<values>red</values>

<values>green</values>

<values>blue</values>

</enumFeatureValues>

</featureMatcher>

<groupFeatureMatchers>

</targetAnnotationMatcher>

<featureAnnotationMatcher annotationTypeName="EngineAnnotation"
fullPath="CarAnnotation:EngineAnnotation" windowsizeInside=1 >

TargetAntotationXML

18 Configuration Files UIMA Version 2.3.1

<groupFeatureMatchers>

<featureMatchers featurePath="__p0:Wheels:toArray:Diameter"
featureTypeName="java.lang.Float" quiet="true" >

<rangeFeatureValues lowerBoundary="20.0" lowerBoundaryInclusive="true"/>

</featureMatcher>

<featureMatchers featurePath="Cylinders" featureTypeName="java.lang.Float" />

<groupFeatureMatchers>

</featureAnnotationMatcher>

3.2.10. TargetAntotationXML

• Attribute: className[1]: String

• Attribute: enclosingAnnotation[1]: String

• Element targetAnnotationMatcher[1..1]: PartialObjectMatcherXML

• Element featureAnnotationMatchers[0..*]: FeatureObjectMatcherXML

This is a root specification for a class (group) of annotations of all extracted instances, which are
assigned the same label (className) in the final output. The label can be a literal string or a feature
path in curly brackets or a combination of the two (i.e. SomeText_{__p0:SomeProperty}).
If using a feature path in a class name label it is required to use the parent tag notation. In such
a case the parent tag refers to the TA specified by the targetAnnotationMatcher element.
Annotations that belong to the group are searched within a span of enclosingAnnotation
according to the specification given in the targetAnnotationMatcher (TAM) and
features from matched annotations are extracted according to specification given in
featureAnnotationMatchers (FAM). In general, the annotation that features are extracted
from could be different from annotations that are matched during the search This is useful when
extracting features for machine learning model building and evaluation where features are selected
from annotations that could be located in a specific location relatively to the annotation that satisfy
a search criteria. For instance, POS tags of 5 words to the left and right from a specific word. Only
if an annotation is successfully evaluated (matched) by a TAM further feature extraction is allowed
and rules specified by corresponding FAMs are executed.

Configuration file sample

UIMA Version 2.3.1 Configuration Files 19

3.3. Configuration file sample

3.3.1. Task definition
The sample configuration file below has been created for extracting features in order to build
models for a machine learning application. The type system for this sample defines several UIMA
annotation types:

• org.apache.uima.tools.cfe.sample.Sentence - type that marks a sentence

• org.apache.uima.tools.cfe.sample.Token - type that marks a token with features:

pennTag: String - POS tag of a token

• org.apache.uima.tools.cfe.sample.NamedEntity - named entity type with features:

Code: String - specific code assigned to a named entity

SemanticClass: String - semantic class of a named entity

Tokens: FSArray - array of org.apache.uima.tools.cfe.sample.Token annotations, ordered by their
offset, that are included in the named entity

The classification task is defined as follows:

a. classify first token of each named entities that has semantic class Car Maker with a class
label that is a composite of the string CMBegin and a value of the Code attribute that named
entity

b. classify all other tokens of named entities of a semantic class Car Maker with a class label
that is a composite of the string CMInside and a value of the Code property of that named
entity

c. classify all other tokens with a class label Other_Token

To build a model for machine learning it is required to extract features from surrounding tokens for
all classes listed above. In particular the following features are required to be extracted:

• a string literal of the token to which the class label is assigned (class token)

• a string literal of each token that is located with in a window of 5 tokens from the class
token with the exception of prepositions (POS tag is IN), conjunctions (CC), delimiters
(DT), punctuation (POS tag is not defined - null) and numbers (CD)

• all extracted features have to be unique with their position information relative to the
location of the class token.

3.3.2. Implementation
Line 1 - a standard XML declaration that defines the XML version of the document and its
encoding

Line 2, 87 - FESL root element that references the schema and defines global variables, such as
nullValueImage (see Null values)

Line 3-32 - rules for extracting features for first tokens of named entities.

Implementation

20 Configuration Files UIMA Version 2.3.1

Line 3 - extracted features for those tokens are assigned a composite label that includes prefix
CMBegin_ pl s a value of a Code attribute of the first element of the TA's path. The search for FA
is going to be performed within boundaries of enclosing org.apache.uima.tools.cfe.sample.Sentence
annotation

Line 4-12 - TAM that defines rules for identifying the fist TA

Line 4 - defines TA's type (org.apache.uima.tools.cfe.sample.Token) and a full path to it
(org.apache.uima.tools.cfe.sample.NamedEntity:Tokens:toArray[0]). According to this path notion,
the CFE will:

• search for annotations of type org.apache.uima.tools.cfe.sample.NamedEntity

• for annotations that were found it accesses the value of their attribute Tokens and if the value
is not null, the method toArray is called to convert the value to an array

• if the resulted array is not empty, its first element will be considered to be a TA

Line 5-11 - defines rules for matching a group of features for TA

Line 6-10 - defines rules for matching a feature for this group

Line 6 - defines that the feature value is of the type java.lang.String and has the feature the path
__p0:SemanticClass, which translates to a value of the attribute SemanticClass of the first element
of the TA's path (org.apache.uima.tools.cfe.sample.NamedEntity)

Line 7-9 - defines an explicit list of values that the feature value should be in

Line 8 - defines the value Car Maker as the only possible value for the feature

Line 13-17 - FAM that defines rules for identifying first FA and its feature extraction

Line 13 - defines FA's type to be org.apache.uima.tools.cfe.sample.Token; the attribute
windowsizeInside with the value 1 tells CFE to extract features from TA itself (TA=FA) and
setting orientation and distance attributes to true tells CFE to include position information into the
generated feature value

Line 14-16 - defines rules for matching a group of features for the first FA.

Line 15 - defines rules for matching the only feature for this group of the type java.lang.String
and with feature path coveredText that eventually will be translated by CFE to a method call of
a org.apache.uima.tools.cfe.sample.Token annotation object; according to this specification the
feature value will be unconditionally extracted

Line 18-31 - FAM that defines rules for identifying second type of FA and its feature extraction

Line 18 - defines FA's type to be org.apache.uima.tools.cfe.sample.Token; the attributes
windowsizeLeft and windowsizeRight with the values 5 tell CFE to extract features from 5 nearest
annotations of this type to the left and to the right from TA and having orientation and distance
attributes set to true tells CFE to include position information into the generated feature value.

Line 19-30 - defines rules for matching a group of features for the second FA.

Line 20 - defines rules for matching the first feature of the group to be of the type java.lang.String
and with the feature path coveredText that eventually will be translated by CFE to a method call
of a org.apache.uima.tools.cfe.sample.Token annotation object; according to this specification the
feature value will be unconditionally extracted

Implementation

UIMA Version 2.3.1 Configuration Files 21

Line 21-29 - define rules for matching the second feature of the group

Line 21 - defines rules for matching the second feature of the group to be of the type
java.lang.String and with the feature path pennTag that eventually will be translated by CFE
to getPennTag method call of a org.apache.uima.tools.cfe.sample.Token annotation object;
according to this specification the feature will be evaluated against enumFeatureValues and, as the
exclude attribute is set to true:

• if the evaluation is successful, the feature matcher will cause the parent group to be
unmatched and since it is the only group in the FAM, no output for this FA will be produced

• if the evaluation is unsuccessful, this feature matcher will not affect matching status
of the group, so the output for FA will be generated as the first matcher of the group
unconditionally produces output

As the quiet attribute is set to true, the feature value extracted by the second matcher will not be
added to the generated for this FA output

Line 22-28 - defines an explicit list of values that the value of the second feature should be in

Line 23-27 - defines values IN, CC, DT, CD, null as possible values for the second feature; if
the feature value is equal to one of these values, evaluation of the enclosing feature matcher is
successful; if the feature value is null it will be converted to the string defined by nullValueImage
(null as set in line 2 of this sample) and as null is one of the list's elements, it will be
successfully evaluated.

Line 34-63 - rules for extracting features for all tokens of named entities except the first. These
rules are the same as the rules defined for first tokens of named entities (lines 3-32) with the
following exceptions:

Line 34 - defines that TAs matched by these rules will be assigned a composite label that includes
prefix CMInside_ plus a value of the Code attribute of a first element of the TA's path

Line 35 - sets the fullPath attribute to
org.apache.uima.tools.cfe.sample.NamedEntity:Tokens:toArray that can be translated as any
token of a named entity, but because of implicit TA exclusion , the TAs that were matched
for first tokens of named entities by the rules for previous TAM are not included into the set of TAs
that will be evaluated by rules for this TAM

Line 65-86 - rules for extracting features for all tokens other than tokens of named entities. These
rules are the same as the rules defined for previous categories with the following exceptions:

Line 65 - defines that TAs matched by the enclosed rules will be assigned the string label
Other_token

Line 66 - only defines a type of TAs that should be processed by the corresponding TAM without
fullPath attribute. Such a notation can be translated as all tokens, but because of the implicit
TA exclusion , the TAs, which were matched for tokens of named entities by rules defined by the
previous TAMs, are not included into the set of TAs that will be evaluated by rules for this TAM.
So, the actual translation will be all tokens other than tokens of named entities.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <tns:CFEConfig nullValueImage="null" xmlns:tns="http://www.apache.org/

uima/cfe/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.apache.org/uima/cfe/config CFEConfig.xsd ">

3. <tns:targetAnnotations className="CMBegin_{__p0:Code}"
enclosingAnnotation="org.apache.uima.tools.cfe.sample.Sentence">

Implementation

22 Configuration Files UIMA Version 2.3.1

4. <tns:targetAnnotationMatcher
annotationTypeName="org.apache.uima.tools.cfe.sample.Token"
fullPath="org.apache.uima.tools.cfe.sample.NamedEntity:Tokens:toArray[0]">

5. <tns:groupFeatureMatchers>
6. <tns:featureMatchers featurePath="__p0:SemanticClass"

featureTypeName="java.lang.String">
7. <tns:enumFeatureValues>
8. <tns:values>Car Maker</tns:values>
9. </tns:enumFeatureValues>
10. </tns:featureMatchers>
11. </tns:groupFeatureMatchers>
12. </tns:targetAnnotationMatcher>
13. <tns:featureAnnotationMatchers annotationTypeName=

"org.apache.uima.tools.cfe.sample.Token" windowsizeInside="1" orientation="true"
distance="true">

14. <tns:groupFeatureMatchers>
15. <tns:featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
16. </tns:groupFeatureMatchers>
17. </tns:featureAnnotationMatchers>
18. <tns:featureAnnotationMatchers annotationTypeName=

"org.apache.uima.tools.cfe.sample.Token" windowsizeLeft="5" windowsizeRight="5"
orientation="true" distance="true">

19. <tns:groupFeatureMatchers>
20. <tns:featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
21. <tns:featureMatchers featurePath="pennTag" featureTypeName="java.lang.String"

exclude="true" quiet="true">
22. <tns:enumFeatureValues caseSensitive="true">
23. <tns:values>IN</tns:values>
24. <tns:values>CC</tns:values>
25. <tns:values>DT</tns:values>
26. <tns:values>CD</tns:values>
27. <tns:values>null</tns:values>
28. </tns:enumFeatureValues>
29. </tns:featureMatchers>
30. </tns:groupFeatureMatchers>
31. < tns:featureAnnotationMatchers>
32. </tns:targetAnnotations>
33.
34. <tns:targetAnnotations className="CMInside_{__p0:Code}"

enclosingAnnotation="org.apache.uima.tools.cfe.sample.Sentence">
35. <tns:targetAnnotationMatcher

annotationTypeName="org.apache.uima.tools.cfe.sample.Token"
fullPath="org.apache.uima.tools.cfe.sample.NamedEntity:Tokens:toArray">

36. <tns:groupFeatureMatchers>
37. <tns:featureMatchers featurePath="__p0:SemanticClass"

featureTypeName="java.lang.String">
38. <tns:enumFeatureValues>
39. <tns:values>Car Maker</tns:values>
40. </tns:enumFeatureValues>
41. </tns:featureMatchers>
42. </tns:groupFeatureMatchers>
43. </tns:targetAnnotationMatcher>

Implementation

UIMA Version 2.3.1 Configuration Files 23

44. <tns:featureAnnotationMatchers
annotationTypeName="org.apache.uima.tools.cfe.sample.Token" windowsizeInside="1"
orientation="true" distance="true">

45. <tns:groupFeatureMatchers>
46. <tns:featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
47. </tns:groupFeatureMatchers>
48. </tns:featureAnnotationMatchers>
49. <tns:featureAnnotationMatchers

annotationTypeName="org.apache.uima.tools.cfe.sample.Token" windowsizeLeft="5"
windowsizeRight="5" orientation="true" distance="true">

50. <tns:groupFeatureMatchers>
51. <tns:featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
52. <tns:featureMatchers featurePath="pennTag" featureTypeName="java.lang.String"

exclude="true" quiet="true">
53. <tns:enumFeatureValues caseSensitive="true">
54. <tns:values>IN</tns:values>
55. <tns:values>CC</tns:values>
56. <tns:values>DT</tns:values>
57. <tns:values>CD</tns:values>
58. <tns:values>null</tns:values>
59. </tns:enumFeatureValues>
60. </tns:featureMatchers>
61. </tns:groupFeatureMatchers>
62. </tns:featureAnnotationMatchers>
63. </tns:targetAnnotations>
64.
65. <tns:targetAnnotations className="Other_token"

enclosingAnnotation="org.apache.uima.tools.cfe.sample.Sentence">
66. <tns:targetAnnotationMatcher

annotationTypeName="org.apache.uima.tools.cfe.sample.Token"/>
67. <tns:featureAnnotationMatchers

annotationTypeName="org.apache.uima.tools.cfe.sample.Token" windowsizeInside="1"
orientation="true" distance="true">

68. <tns:groupFeatureMatchers>
69. <tns:featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
70. </tns:groupFeatureMatchers>
71. </tns:featureAnnotationMatchers>
72. <tns:featureAnnotationMatchers

annotationTypeName="org.apache.uima.tools.cfe.sample.Token" windowsizeLeft="c"
windowsizeRight="5" orientation="true" distance="true">

73. <tns:groupFeatureMatchers>
74. <tns:featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
75. <tns:featureMatchers featurePath="pennTag" featureTypeName="java.lang.String"

exclude="true" quiet="true">
76. <tns:enumFeatureValues caseSensitive="true">
77. <tns:values>IN</tns:values>
78. <tns:values>CC</tns:values>
79. <tns:values>DT</tns:values>
80. <tns:values>CD</tns:values>
81. <tns:values>null</tns:values>
82. </tns:enumFeatureValues>
83. </tns:featureMatchers>
84. </tns:groupFeatureMatchers>

Implementation

24 Configuration Files UIMA Version 2.3.1

85. </tns:featureAnnotationMatchers>
86. </tns:targetAnnotations>
87. </tns:CFEConfig>

Using CFE for evaluation 25

Chapter 4. Using CFE for evaluation
Comparison of results produced by a pipeline of UIMA annotators to a gold standard or results
of two different NLP systems is a frequent task. With CFE this task can be automated.

The paper "CFE a system for testing, evaluation and machine learning of UIMA based
applications" by Sominsky, Coden and Tanenblatt describes details of the evaluation process.

	CFE User Guide
	Table of Contents
	Chapter 1. Overview
	1.1. Motivation
	1.2. Approaches to feature extraction
	1.2.1. Custom CAS Consumers
	1.2.2. CFE approach

	1.3. CFE Basics

	Chapter 2. Components
	2.1. FESL XSD
	2.2. Source Code
	2.3. Descriptors
	2.4. Type Dependencies

	Chapter 3. Configuration Files
	3.1. Common notations and tags
	3.1.1. Feature path
	3.1.2. Full path and partial path
	3.1.3. TAM and FAM
	3.1.4. Arrays
	3.1.5. Parent tag
	3.1.6. Null values
	3.1.7. Implicit TA exclusion

	3.2. FESL Elements
	3.2.1. BitsetFeatureValuesXML
	3.2.2. EnumFeatureValuesXML
	3.2.3. ObjectPathFeatureValuesXML
	3.2.4. PatternFeatureValuesXML
	3.2.5. RangeFeatureValuesXML
	3.2.6. SingleFeatureMatcherXML
	3.2.7. GroupFeatureMatcherXML
	3.2.8. PartialObjectMatcherXML
	3.2.9. FeatureObjectMatcherXML
	3.2.10. TargetAntotationXML

	3.3. Configuration file sample
	3.3.1. Task definition
	3.3.2. Implementation

	Chapter 4. Using CFE for evaluation

