CFE User Guide

Written and maintained by the Apache UIMA Development Community

Version 2.3.1

Copyright © 2006, 2011 The Apache Software Foundation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date August, 2011

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

L OVEBIVIBIW oottt e e e e e et e e ettt e et e e e e e e e e et e e e e e e eeebeb e e e eaaaenes 1
L1 MOBIVELION coiiiiiiiiiiiii i 1

1.2. Approaches to feature extraCtion ..o 2
1.2.1. CuStOM CAS CONSUMENSeeeiineeeiitiaeeeeii e ettt e e eeti e e eeti e e eena e e eeaa e eennes 2

2 O o] o] (0o o SR 2

1,30 CFE BBSICS e 3

2. COMPONENLS .eteieeeeie ettt ettt ettt e et e ettt e e e et e e e et e e et e b e e et et e e e e et e e e e et e eeeenanees 5
2.0 FESL XD i 5

2.2, SOUICE COOE ...tttk 5

2.3 DESCIIPLOIS it 5

2.4, TYPE DEPENUENCIESeeiieeeiiiiie et e et e e e e et e e e e e e e et s e e e e e e e eeaetnn e e eeeees 5

I @0 g 1 To 0= 1 o TN T = 7
3.1. CommON NOLELiONS AN t8OS -....uuuuuueenii e 7

3. L1 FEAUIE PAN ..euiiiiiiiiiiiieeti et 7

3.1.2. Full path and partial pathcoooieeiiiiiie e 7

30 e R 17N 1Y = o N 1Y PR 7

B i AT AY S it e 8

G I ST o= = o = o [PP 8

.16, NUIL VBIUES ..o e e e e e e s 9

3.1.7. IMPlICIt TA EXCIUSION ...t eeeeeeees 9

3.2, FESL EIBMENTS ..o 9
3.2.1. BitsetFeatureValUeSXMLcooiiiiiiiiiiiiiiiiiiiiieee 9

3.2.2. EnumFeatureValUESXIML ... 10

3.2.3. ObjectPathFeatureValUeSX MLcccovviiiiiiiiiiiiii 11

3.2.4. PatternFeatureValUESXIML uuiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieieeb i beaeeeeeeeeeeeeeeeeees 11

3.2.5. RangeFeatureValUBSXIML uueiiiiiiiiiiii e 11

3.2.6. SingleFeatureMatCherX XMLooviiiiiiiiiiieieee e 12

3.2.7. GroupFeatureMatCherX MLoiiieeiiiiiiiie e e e e e e eaaaees 13

3.2.8. Partial ObjeCtMatCher XMLueuiiiiiiiiiiiiiiiiiiiiiiieiiieiieeeebeeeebeeeeeeeeeeeeeeeneaees 14

3.2.9. FeatureObjeCtMaCherX XMLcooiiiiiiiiiiie et 16

G228 L0 BN IF= 0= VAN 10 = 11 o 1Y/ 18

3.3. Configuration file SAMPIEccoeeiiiii 19
3.3.1. Task defiNITION ..ooeeeieei e 19

BTG T2 1 o] = 49T 01 = o o 19

4, UsiNg CFE fOr eValUationiiiiiieiiieiiie e e e et s e e e e e e eee e e e e eeeaeees 25
CFE User Guide iii

Chapter 1. Overview

1.1. Motivation

Feature extraction, the extraction of information from data sources, is a common task frequently
required to be performed by many different types of applications, such as machine learning,
performance evaluation, and statistical analysis. This guide describes atool that can be used to
facilitate this extraction process, in conjunction with the Unstructured Information Management
Architecture (UIMA), particularly focusing on text processing applications. UIMA provides a
mechanism for executing modules called Analysis Engines that analyze artifacts (text documents
in our case) and store the results of the analysis in a data structure called the Common Analysis
Structure (CAS). These results are stored as Feature Structures, which are simply data structures
that have an associated type and a set of propertiesin the form of attribute/value pairs. Feature
Structures that are attached to a particular span of atext document are called Annotations. They
usually represent a concept that the analysis engine computes based on the text. The attributes are
called Feat ur es in UIMA terminology. This sense of feature will always be referred to as Ul MA

f eat ur e in this document, so as not to be confused with the general sense of f eat ur e when
discussing f eat ure extracti on, referring to the process of extracting values from data sources
(in our case, the CAS). Values that are extracted are not required to be values of attributes (i.e.,
UIMA Features) of Annotations, but can be computed by other methods, as will be shown later.
Thetermsf eat ur es and f eat ur e val ues in thisdocument refer to any value extracted from the
CAS, regardless of the particular source.

As an example, Figure 1 depicts annotation objects of the type Token that are associated with
individual words, each having attributes | ndex and POS (part of speech). A feature extraction
task could be "extract token indexes for the words that are nouns’. Such atask is translated to the
following execution steps:

1. find an annotation of atype Token

2. examine the value of PCS attribute

3. extract the value of | ndex attribute only if the value of POS attribute is NN
The expression "word that is anoun” defines a concept, and its implementation is that it hasto be
found inthe CAS. Token i ndex istheinformation (i.e., f eat ur e) to be extracted. The resulting

values for the task will be values 3 and 9, which are the values of the attribute | ndex for the words
car andfi ni sh.

Token: Token: Token: Token:

Index: 2 Index: 4 Index: 6 Index: 8

POS: 1T POS: VBD POS: I POS: DT
Token: Token: Token: Token: Tolken:
Index: 1 Index: 3 Index: 5 Index: 7 Index: 9
POS:DT POS: NN POS:IN POSIN POS:NN

=== | ‘== i ===l [
The blue car came 1n first at the finish

Figure 1. Annotated text sample

Overview 1

Approaches to feature extraction

While Figure 1 shows afairly simple example of annotations types associated with some text,

real world applications could have quite sophisticated annotation types, storing various kinds of
computed information. Consider an annotation type Car that has, for illustration purposes, just two
attributes: Col or and Engine. While the attribute Col or isof type string, the Engi ne attribute is
a complex annotation type with attributes Cyl i nder s and Si ze. Thisis represented by a UML
diagram in Figure 2, illustrating a class hierarchy on the left and sample instance of this class
structure on the right.

CarAnnotation
S Cohor Strng

=i MyCar : CarAnnotation

1 1 Colar = "bluse

+ Whaels + Ergire :
1 Whagk ™., Engne
; : 3 o N
WheelAnnotation Engine Annotation 1 " : 5 EFE z
= Dameter s Float = Cyinders : Tntega : P.“'I'.I'U'll'lwel :W!-IEEIAHHUtdlIOlI -H[EHEIIHE-. EngineAniotation
" % g Dlameter = " 20 Cwlimders = 6

7, Sipe : Float
: 5 Sipe = "3.5°

Figure 2: Composite object sample

If arequirement isto extract the number of cylinders of the car's engine, then the application

needs to find any object(s) that represent the concept of acar (Car Annot at i on in this case) and
traverse the object's structure to access the Cyl i nder s attribute of Engi neAnnot at i on. Oncethe
attribute's value is accessed, the application outputs it to the desired destination, such as atext file
or adatabase.

1.2. Approaches to feature extraction

1.2.1. Custom CAS Consumers

When working with UIMA, feature extraction is usually implemented by writing a special UIMA
component called a CAS Consumer that contains custom code for accessing the annotations and
their attributes, outputting them to afile, memory or database as required. The CAS consumer
contains explicit logic for traversing the object's structure and examining values of specific
attributes. Also, the CAS consumer would likely have code for outputting the accessed values

to a particular destination, as required by the application. Writing CAS consumers can be labor
intensive and requires Java programming. While this approach allows powerful control and
customization to an application’s needs, supporting the code can become problematic, especially as
application requirements change. This can have a negative effect on many different aspects of code
support, such as maintenance, evolution, bug fixing, reusability etc.

1.2.2. CFE approach

CFE isamultipurpose tool that enables feature extraction from a UIMA CASin avery generalized
and application independent way. The extraction processis performed according to rules expressed
using the Feature Extraction Specification Language (FESL) that are stored in configuration

files. Using CFE eliminates the need for creating customized CAS consumers and writing Java
code for every application. Instead, by using FESL rulesin XML format, users can customize the

2 Overview UIMA Version 2.3.1

CFE Basics

information extraction process to suit their application. FESL's rule semantics allow the precise
identification of the information that is required to be extracted by specifying precise multi-
parameter criteria. The FESL syntax and semantics are defined further in this guide.

1.3. CFE Basics

The feature extraction process involves three major steps:

1. locating a concept of interest that is represented by a UIMA annotation object; examples of
such concepts could be "word that is anoun" or "a car that has a six cylinder engine" etc.
The annotation object that represents such a concept is referred to as the Target Annotation
(TA)

2. locating concepts, relative to the TAs, specifying the information to extract. These are also
represented by UIMA annotations, that are within some context of the TAs. Some examples
of context could be "to the left of the TA" or "within the TA" etc. The annotation object that
corresponds to such a concept is referred to as the Feature Annotation (FA). In relation to
Figure 1, an example FA could be the expression "two words to the left from word finish
that isanoun", assuming that "word finish that is a noun", describes the TA. The result of
such a specification will betokensat andt he

3. extraction of the specified information from FAs

Just to illustrate the process, suppose the requirement is "to extract indexes of two words to the
left of the word finish that isanoun”. In such a scenario, in the first step, CFE locatesa TA that is
represented by an annotation object corresponding to aword f i ni sh and also hasits PCS attribute
equal to NN. For the second step, FAs that correspond to two words to the left from TA are located.
On the third step, values of the | ndex attribute for each of FAsthat were found are extracted. It

is possible, however, that the requirement is to extract the value of the | ndex attribute from the
annotation for theword f i ni sh itself. In such a case, the TA and FA are represented by the same
UIMA annotation object. Thisis usually the case when extracting features for evaluation or testing.
The specification for aTA or FA can be specified by complex multi-parameter conditions that are
also expressed using FESL, as will be shown later.

UIMA Version 2.3.1 Overview 3

Chapter 2. Components

2.1. FESL XSD

The specification for FESL iswritten in XSD format and stored in the file <CFE_ HOME>/
src/main/xsdForEmf/CFEConfigM odel .xsd to be used by EMF-based parser generator and in
<CFE_HOME>/src/main/xsdForX ML Beans for XML Beans parser generator). Using this XSD in
conjunction with an XML editor that provides syntax validation can help to provide more efficient
editing of FESL configuration files.

2.2. Source Code

CFE isimplemented in Java 5.0 for Apache UIMA, and resides in the org.apache.uima.tools.cfe
package. CFE is dependent on Eclipse EMF, Apache UIMA, and the Apache XMLBeans

and JX Path libraries. The source code contains the compl ete implementation of CFE,

including auxiliary utility classes that wrap some UIMA functionality (located in
org.apache.uima.tools.cfe.support package)

2.3. Descriptors

A sample descriptor file that defines atype system for machine learning processing islocated in
<CFE_HOME>src/main/resources/descriptors/type_system/A ppliedSenseAnnotation.xml

A sample descriptor that uses CFE in a CAS Consumer is located in <CFE_HOME>src/main/
resources/descriptors/cas_consumers/UIM A FeatureConsumer.xml

2.4. Type Dependencies

CFE code uses UIMA example annotation type

or g. apache. ui ma. exanpl es. Sour ceDocunent | nf or mat i on to retrieve the name of
adocument that is being processed. Typically, annotations of this type are produces by afile
collection reader, provided by UIMA examples. If aUIMA application uses a different type of
areader, an annotation of this type should be created and initialized for each document prior
to execution of TAE. Please see <CFE_HOM E>src/test/javalorg/apache/uimaltool s/cfe/test/
CFEtest.javafor an example.

Components 5

Chapter 3. Configuration Files

3.1. Common notations and tags

CFE configuration files are written using FESL semantic rules, as defined in CFEConfig.xsd. These
rules describe the information extraction process and are independent of the application from which
the information is to be extracted. There are several common notations and tags that are used in
different elements of FESL

3.1.1.

Feature path

A "feature path" is a mechanism used by FESL to identify a particular feature (not necessarily a
UIMA feature) of an annotation. The value associated with the feature, indicated by the feature
path, can be either evaluated to match a certain criteria or extracted to the final output or both.

The syntax of afeature path is an indexed sequence of attribute/method names separated by the
colon character. Such a sequence mimics the sequence of Java method calls required to extract

the feature value. For example, avalue of the Engi neAnnot at i on attribute Cyl i nder s from
Figure 2 can be written as Car Annot at i on: Engi ne: Cyl i nder s, where Engine is an attribute of
Car Annot at i on. Theintermediate results of each step of the call sequence can be referred from
different FESL structural elements by their zero-based index. For instance, the Parent Tag notation
(see below) uses the index to access intermediate values. The feature path can be used to identify
feature values that are either primitives or complex object types.

3.1.2.

Full path and partial path

There are two different ways of using feature path notation to identify an object: full path and
partial path. The object can be one of the following:

e an annotation
 value of an annotation's attribute

 value of aresult of an annotation's method; only get-style methods (methods that return a
value and take no parameters) are supported.

A full path specifies a path to an object starting from its type. For instance, if Engi neAnnot at i on
is specified asafull path, it would refer to al instances of annotations of that type.

If Car Annot at i on: Engi ne is specified, it would refer only to instances of the

Engi neAnnot at i on typethat are attributes of instances of the Car Annot at i on type. Full path
notation is usually used for TA or FA identification.

A partial path specifies a path to an object starting from a previously located annotation object
(whether TA or FA). For example, if an instance of Car Annot at i on islocated asaTA, then

the size of its engine can be specified as Engine:Size. Partial path notation is usually used for
specification of feature values that are being examined or extracted. The distinction between "full
path" and "partial path” is very similar to the concepts of "absolute path" and "relative path" when
discussing a computer's file system.

3.1.3.

TAM and FAM

Each FESL ruleisrepresented by al XML element with thetagt ar get Annot at i on , as specified
in the XSD by the TargetAnnotationXML type. Each element of this type is a composition of:

Configuration Files 7

Arrays

» asingletarget annotation matcher (TAM) that is denoted by an XML element with the tag
t ar get Annot at i onMat cher , of thetype Parti al Obj ect Mat cher XML

* optional feature annotation matchers (FAM) denoted by XML elements with the tag
f eat ur eAnnot at i onMat cher s, of thetype Feat ur eCbj ect Mat cher XML

The TAMspecifies search criteriafor locating Target Annotations (TA s), while FAMs contain
criteriafor locating Feature Annotations (FA s) and the specification of features for extraction from
the FA s. The criteriafor the search and the features to be extracted are specified using the feature
path notation, as explained earlier. The XML tags representing the matchers are detailed below.

3.1.4. Arrays

Since UIMA annotations may have arrays as attributes, FESL provides the ability to perform
feature extraction from array objects. In particular, going back to Figure 2, if the implementation
for the Wheel s attributeisa UIMA FSAr r ay type, then using feature path notation:

« thefeature value for the Wheel s attribute of FSAr r ay type can be specified as
Car Annot at i on: Weel s.

« thefeature value for the number of elementsin the FSAr r ay can be specified as
Car Annot at i on: Weel s: si ze, where size isamethod of FSAr r ay ; such value
corresponds to a concept of how many wheels the car has.

» thefeature values for individual elements of Wheel s attribute of type Wheel Annot at i on
can be accessed as Car Annot at i on: Wheel s: t oAr r ay. It should be noted that t oAr r ay is
aname of amethod of the FSAr r ay type rather than a name of an attribute.

* thefeature valuesfor Di anet er attribute of each Wheel Annot at i on can be specified as
Car Annot at i on: Wheel s: t oArray: Di anet er

The result of using toArray as an accessor isan array of values. FESL also provides syntax for
accessing individual elements of arrays by index.

* thefeature for the diameter of the first wheel can be specified as
Car Annot at i on: Wheel s: t oArray[0] : Di anet er

* thefeature for the diameter of the first and second wheels can be specified as
Car Annot ati on: Wheel s:toArray[0] [1] : D anet er

* thefeature for the diameter of first three wheels can be specified as
Car Annot at i on: Wheel s: t oArray[0- 2] : Di anet er

The specification of individual elements can be mixed for example:

Car Annot at i on: Weel s: t oArray[0] [2- 3] : Di anet er refersto all elements of Wheel s
attribute except the second. If the index specified falls outside the range of the matched data, a null
value will be assigned.

If required, FESL allows sorting extracted features by an offset in the
text of the annotations that these features are extracted from. For instance
Car Annot at i on: Weel s: t oArray[sort]: Di amet er would ensure such an order.

3.1.5. Parent tag

The parent tag is used to access a specific element of afeature path of a TA or FA by index. If a
parent tag is used within a TAM specification, it is applied to the full path of the corresponding

8 Configuration Files UIMA Version 2.3.1

Null values

TA. Likewise, parent tags contained in FAMs are applied to the full a path of the corresponding
FA. Thetag consistsof __p prefix followed by the index of an element that is being accessed.

For instance, __ p0 addresses the first element of afeature path. The tag can be a part of afeature
path. For example, if aTA is specified as Car Annot at i on: Wheel s: t 0Ar r ay, corresponding to
aconcept of "wheels of acar" then the value of the Col or attribute of a Car Annot at i on object
can be accessed by specifying __p0: Col or . Such a specification can be used when it is required
to examine/extract features of a containing annotation along with features of contained annotations.
Samples of using parent tags are provided in the sections that detail FESL syntax, below.

3.1.6. Null values
CFE alows comparing feature values for equality to null. The root XML element CFEConfig has
astring attribute nul | Val uel nage that setsaliteral representation of anull value. If an extracted
feature valueis null, it will be converted to a string that is assigned the nul | Val uel mage attribute.
The example below illustrates the usage of this attribute.

3.1.7. Implicit TA exclusion

While all FAM specifications for asingle TAM are independent from each other, thereis an
implicit dependency between TAMSs. In particular, they are dependent on the order in which

they are specified in a configuration file. Annotations corresponding to certain concepts that

were identified by a TAM that appear earlier in the configuration file will be excluded from
further processing by FESL. Thisrule only appliesto TAMsthat usethef ul | Pat h attribute

in their specification (see Parti al Obj ect Mat cher XML). Having the implicit exclusion
helps to separate the processing of same type annotations in the case when these annotations

have different semantic meaning. For instance, the set of features that is required to be extracted
from annotations of type Engi neAnnot at i on that are attributes of Car Annot at i on objects
can be different than a set of features that is required to be extracted from annotations of the
same Engi neAnnot at i on type that are attributes of some other type or are not attached to

any annotations of other types. To implement such a behavior in FESL, the fist TAMwould
contain criteriafor locating Engi neAnnot at i on objects that are attached to objects of the

Car Annot at i on type, while the second TAMwould not specify any restriction on containment of
objects of the Engi neAnnot at i on type. If such a specification isgiven, all Engi neAnnot at i on
objects located according to the rule in the first TAMwill be excluded from further processing and,
hence, will not be available for processing by rules given in the second TAM

3.2. FESL Elements

FESL's XSD defines several elements that allow specify rules for feature extraction. These
elements may contains attributes and other elementsin their definition

3.2.1.

BitsetFeatureValues XML
 Attribute: bitmask[1]: Integer

 Attribute: exact_match[0..1]: boolean: default false

L] BitsetPeatureValuesXML

(@ bitmask string

(3 exact_match boalean

UIMA Version 2.3.1 Configuration Files 9

EnumFeatureVauesXML

The specification enables comparing a feature value to an integer bitmask. The feature value is
considered to be matched if it is of an Integer type and:

 if theexact _mat ch attributeisset totrueand all "1" bits specified in bitmask are also set in
feature value

« if theexact _mat ch attribute is set to false and any of "1" bits specified in bitmask isaso
set in feature value

Example:
<bitsetFeatureV alues bitmask="3" exact match="false" />
<bitsetFeatureV alues bitmask="3" exact_match="true" />

Thefirst line of the example specifies atest whether either of the two less significant bits of
afeature value is set. To be successful, the test specified by the second line requires both less
significant bits to be set.

3.2.2.

EnumFeatureValues XML
 Attribute: caseSensitive[0..1]: boolean: default false
» Element: valueg[0..*]: String

[f] EnumFeatureValuesXML

(@) casaSensitive boalean

[2] values [0..*] string

EnumFeatureValuesXML element allow to test if afeature value belongs to afinite set of

values. According to EnumFeatureVauesXML specification, if afeature value is equal to either
one of the elements of values then the feature is considered to be successfully evaluated. The
caseSensi ti ve attribute indicates whether the comparison between the feature value and
members of the values element is case sensitive. The FESL fragment below shows how to specify
such a comparison:

<enumFeatureV alues caseSensitive="true">
<values>red</values>
<values>green</values>
<values>blue</values>

</enumFeatureV alues>

This fragment specifies a case sensitive comparison of afeature value to a set of strings: r ed,
gr een and bl ue.

Special processing occurs when the array has only a single element that startswithfile: //,
enabling the use of external dictionaries for comparison. In this case, the text within theval ues
element istreated as a URI. The contents of the file referenced by the URI will be loaded and

used as a set of values against which the feature value is going to be tested. The file should

contain one dictionary entry per line, with each line starting with the # character considered

to be acomment and thus will not be loaded. The dictionary handling isimplemented in
org.apache.uima.tools.cfe.EnumeratedEntryDictionary. The default implementation supports single

10

Configuration Files UIMA Version 2.3.1

ObjectPathFeatureValuesXML

token (whitespace separated) dictionary entries. If a more sophisticated dictionary format is desired,
then either the constructor's parameters can be changed or methods for initializing and loading the
dictionary from afile can be overridden.

3.2.3. ObjectPathFeatureValuesXML

« Attribute: objectPath[1]: String

[§] ObjectPathFeatureValuesXML

(&) objectPath string

According to ObjectPathFeatureV aluesXML specification, the TA or FA itself

(depending on whether thiselement isin TAM orin FAM) istested whether it is

at the location defined by the objectPath. This ability to evaluate whether a feature

belongs to some CAS object is useful specifically in the cases where a particular feature

value isthe property of severa different objects. For instance, this element can be used

when features from annotations should be extracted only if they are attributes of other
annotations. The FESL fragment below specifies atest that checksif an object's full pathis
org. apache. ui ma. t ool s. cf e. sanpl e. Car Annot at i on: Wheel s: t oArr ay. Such atest,
for instance, can be used to check if an instance of aWieel Annot at i on belongs to an instance
Car Annot at i on:

<objectFeatureValues
objectPath="org.apache.uima.tool s.cfe.sample.CarAnotation: Wheel s:toArray" b>

3.2.4. PatternFeatureValuesXML

 Attribute; pattern[1]: String

|E| FatternFeatureValueskML

(3) pattern string

The PatternFeatureV aluesXML element enables comparing a feature value against a regular
expression specified by the pat t er n attribute using Java Regular Expression syntax and
considered to be successfully evaluated if the value matches the pattern.

The FESL fragment below defines atest that checks if a feature value conforms to the hex number
format:

<patternFeatureV alues pattern="(0[Xx][0-9A-Faf]+)" />

3.2.5. RangeFeatureValuesXML

* Attribute: lowerBoundary[0..1]: Comparable: default O

* Attribute: lowerBoundarylnclusive[0..1]: boolean default false
* Attribute: upperBoundary[0..1]: Comparable default O
 Attribute: upperBoundaryinclusive[0..1]: boolean default false

According to RangeFeatureVauesXML specification the feature value is evaluated whether it is
of a Comparable type and belongs to the interval specified by the attributes| ower Boundar y and

UIMA Version 2.3.1 Configuration Files 11

SingleFeatureM atcher XML

upper Boundar y. The attributes| ower Boundar yl ncl usi ve and upper Boundar yl ncl usi ve
indicate whether the corresponding boundaries should be included in the range for comparison.
FESL fragment below specifies atest that checksif feature value isin the numeric range between 1
and 5, including 1 and excluding 5:

<rangeFeatureVaues lowerBoundary="1.8" upperBoundarylnclusive="true"
upperBoundary="3.0" />

3.2.6. SingleFeatureMatcherXML

* Attribute: featurePath[1]: String

Attribute: featureTypeName]0..1]: String: no default value
Attribute: exclude[0..1]: boolean: default false
Attribute: quiet[0..1]: boolean: default false

Element: featureV alues one of

bitsetFeatureV alues: BitsetFeatureValuesX ML
enumFeatureValues: EnumFeatureValuesXML
objectPathFeatureV alues: ObjectPathFeatureValuesXML
patternFeatureV alues: PatternFeatureV aluesX ML

rangeFeatureV alues. RangeFeatureVauesXML

[§] SingleFeatureMatchardML [I] RangeFeatureValuesiiML

(@) featureTypaMama sring @ lawerBoundanyIncusive bzalean
(&) featurePath string (&) upperBoundandnclusive baolean
@) exclude boclean (&) lawerBoundary anySirnpleType
(8 quiet boolean (@ upperBoundary anySimpleType
|&| ranpeFeatureValues [0.1] RengefeatureValuesiML
|&] enumFeaturevalues [0.1] EnumPFaatureValuesiiML |&=] EnumFeatureValuesKML
et [B] bitsetFeatureVaiues [0.1] BisetFeaturaValuesiML (8) saseSensitive boclean
|&] chjectPathFeatwavalues [0.1] ObjectPathFeaturevaluessML (e| values [0..*] string
|| patternFratureValues [0.1] PattamFeatureValuesXML

[i] BitsetFeatureValueskXML

(@) bitmask string

(@ exact_match boolean

T-l DirjectPathFeaturevalues ML

(@) ohjectPath string

{[E] PatternFeatureValuesxhL

{8} pattern string

The Si ngl eFeat ur eMat cher XM defines rules for matching of afeature value to the
featureVaues element. The featureV alues can be one of the elementsin the bullet list above. The

12

Configuration Files

UIMA Version 2.3.1

GroupFeatureM atcher XML

previous section detailed rules for matching a feature value to each of these elements. According
to the specification for matching of a single feature value, first, a value of afeature denoted by
therequired f eat ur ePat h attribute islocated. For features that have arraysin their featurePath
multiple values can be found. If such value(s) isfound and optional f eat ur eTypeNane attribute
specifies atype name of the feature value, every found feature value is tested to be of that type.

If the test is successful, then feature values are evaluated according to a specification givenin
featureValues. After the evaluation is performed asingle feature is considered to be successfully
evauated if:

» the exclude attribute value is set to false and at |east one feature value is matched to
f eat ur eval ues specification.

« the exclude attribute value is set to true and none of the feature values is matched to
f eat ur eVal ues specification.

For Si ngl eFeat ur eMat cher XM elements that are parts of TAM element only evaluation of
feature valuesis performed. If aSi ngl eFeat ur eMat cher XML element is a part of FAM then the
feature value is output only if the qui et attribute is set to false. If the value of the qui et attribute
is set to true, then, even if the feature is matched, only an evaluation is performed, but no valueis
written into the final output. A f eat ur ePat h attribute uses feature path notation explained earlier.

FESL fragment below defines atest that checksif avalue of the Si ze attribute isin arange defined
by r angeFeat ur eVul ues element:

<featureMatchers featurePath="Size" featureTypeName="java.lang.Float">

<rangeFeatureVaues lowerBoundary="1.8" upperBoundarylnclusive="true"
upperBoundary="3.0"/>

</featureMatchers>

In addition it is allowed to use the parent tag (see Parent tag) inthef eat ur ePat h attribute. A
sampleinthe Par t i al Cbj ect Mat cher XM. section detail on how use the parent tag notation.

3.2.7. GroupFeatureMatcherXML

* Attribute: exclude[0..1]: boolean: default false

» Element: featureMatchers[1..*]: SingleFeatureMatcherX ML

|: | GrowpFeatursMatcher ML 1 ¥ SanpeFaastureMatcharkML
() axchade bescbean | () featureTypeName string
|e] featursMatchers [1..*] SingleFaatureMatcheriL (@) Peaturepath shring
(B exnclude boolean
(W) guist boclean
E| rangeFeaturevalies [0..1] RangefestureliakinsXML
€] enumFoaturevakees [0.1] EnumSeaturgVakissXML
€] bibnetfeatburevaloes [0..1] BitsetFeature¥akiesXHL

e| chjectPathFeaturevalues [0,.1] ObjectPathFeatureVakieskML
[] patternFeatureValues [0.1] PabtermFeabureValussiil

Thisis a specification for matching a group of features. It can be applied to both types of
annotations, TAs and FAs. Each element in featureMatchersis evaluated against either aTA or a
FA annotation. The group is considered to be matched if:

UIMA Version 2.3.1 Configuration Files 13

Partial ObjectMatcherXML

» theexcl ude attribute valueis set ao false and all elementsin f eat ur eMat cher s have
been successfully evaluated.

» theexcl ude attribute value is set to true and evaluation of either of the elementsin
f eat ur eMat cher s is unsuccessful

The FESL fragment below defines a group with the two features Col or and Wheel s: Si ze to be
matched. The entire group is to be successfully evaluated if both features are matched. The first
feature is successfully evaluated if its value is one of the values listed by its enunfeat ur eVal ues
element and the second feature is matched if its value is not in the set contained in its

enunfeat ur eVal ues element, as specified by itsexcl ude attribute. It should be noted that if the
optional attribute f eat ur eTypeNane is omitted then afeature value is assumed to be of astring
type. Otherwise afeature value's type will be evaluated if it is the same or derived from the type
specified by the f eat ur eTypeNane attribute. Assuming the gr oupFeat ur eMat cher is specified
for the Car Annot at i on type, the test defined by a FESL fragment below is successful isacar is
ether red, green or blue and it does not have 1 or 3 wheels:

<groupFeatureMatchers>

<featureMatchers featurePath="Color" featureTypeName="java.lang.Stting">
<enumFeatureVaues caseSensitive="true">

<values>red</values>

<values>green</values>

<values>blue</values>

</enumFeatureV aues>

</featureMatcher>

<featureMatchers featurePath="Wheels.Size" exclude="true">

<enumFeatureV aues caseSensitive="true">

<values>1</vaues>

<values>3</vaues>

</enumFeatureVaues>

</featureMatchers>

<groupFeatureMatchers>

3.2.8. PartialObjectMatcherXML

* Attribute: annotationTypeName[1]: String

« Attribute: full Path[0..1]: String: no default value

» Element: groupFeatureMatcherg0..*]: GroupFeatureM atcherX ML

14 Configuration Files UIMA Version 2.3.1

Partial ObjectMatcherXML

[E] PastialObjectMatcher kMl [E] GroupFeaturafatchersML
(&) annatation TypeName string (@) exclude bealean
(&) fullPath string _... |£| featureMatchars [1.%] SingleFeaturaMatcharML
[&] groupFeaturaMatchars [0..*] GroupFeatureMatchardML

Thisis abase specification for an annotation matcher that will search annotations of atype
specified by annot at i onTypeNane located on a path specified by f ul | Pat h. If f ul | Pat h
isomitted or just contains the type name of an annotation (same as annot at i onTypeNane
attribute) then all instances of that type are considered for further feature value evaluation. If

f ul | Pat h contains a path to an object from an attribute of a different object, then only instances
of annot at i onTypeNane that located on that path will be considered for further evaluation

Once an annotation is successfully evaluated to match atype/path, its features are evaluated
according to specification given in all elements of gr oupFeat ur eMat cher s. If evaluation of

any gr oupFeat ur eMat cher s issuccessful or if no gr oupFeat ur eMat cher s isgiven, then

the annotation is considered to be successfully evaluated. Thef ul | Pat h attribute should be
specified using syntax described in the feature path section above, with the exception that it can
not contain any parent tags. For instance, a specification where avalue of thef ul | Pat h attribute
isCar Annot at i on: Engi ne and avalue of theannot at i onTypeNane iSEngi neAnnot ati on
would address only engines that are car engines. Par t i al Annot at i onMat cher XM is used to
specify search rulesin TAM specifications. To illustrate the use of parent tag notation let's consider
an example where it is required to identify engines of blue cars that have a size more than 1.8 | but
not greater then 3.0 . According to a class diagram in Figure 2, the FESL fragment below defines
rules for the task. It should be noted that the second feature matcher usesthe parent tag notation to
access avalue of the Car Annot at i on's attribute Col or :

<targetAnnotationMatcher annotationTypeName="EngineAnnotation"
fullPath="CarAnnotation:EngineAnnotation" >

<groupFeatureMatchers>
<featureMatchers featurePath="Size" featureTypeName="java.lang.Float">

<rangeFeatureVaues lowerBoundary="1.8" upperBoundarylnclusive="true"
upperBoundary="3.0"/>

</featureMatchers>

<featureMatchers featurePath="__ p0:Color" featureTypeName="java.lang.String"
<enumFeatureV alues caseSensitive="true">

<values>red</values>

<values>green</values>

<values>blue</values>

</enumFeatureV alues>

</featureMatcher>

<groupFeatureMatchers>

</targetAnnotationM atcher>

UIMA Version 2.3.1 Configuration Files 15

FeatureObjectMatcher XML

3.2.9. FeatureObjectMatcherXML

extends Part i al Annot at i onMat cher XML
* Attribute: windowsizel eft[0..1]: Integer: default O
* Attribute: windowsizelnside[0..L]: Integer: default O
* Attribute: windowsizeRight[0..1]: Integer: default O
« Attribute: windowsizeEnclosed[0..1]: Integer: default O
« Attribute: windowFlagg[0..1]: Integer: default O
« Attribute: orientation[0..1]: boolean: default false

 Attribute: distance]0..1]: boolean: default false

[E] PartialObpectMatcher XML
(@) annetationTypehame string
() fullPath tring
[8] groupFeatwraMatchers [0..°] GroupPeatureMatcherkML

|}_| FeatureOhjectMatcherkHl

(@) windowsizelaft it
(&) windowsizelnside int
(@) windowsizeRight int

(@) windowsizefnclosed int

@ windpwFlags it
(@) orieritation boalean
(&) distance boalean

The Feat ur eObj ect Mat cher XML element contains rules that specify how
Feat ur eAnnot at i ons (FA) should be located and which features should be extracted from
them. It inherits its properties from Par t i al Cbj ect Mat cher XM_. In addition it has semantics for

specifying:
 asize of asearch window
» adirection for the search relative to a corresponding Target Annotation (TA).
It is done by using boolean attributeswi ndowsi zeLef t , wi ndowsi zel nsi de,
wi ndowsi zeRi ght , wi ndowsi zeEncl osed and the bitmask wi ndowF| ags attribute that indicate
FA's search rules:
» windowsizel eft - asize of the search window to the left from TA

» windowsizeRight - asize of the search window to the right from TA

» windowsizelnside - asize of the search window within TA boundaries; if the value of this
attribute is 1, then the TA is considered to be an FA at the sametime

16

Configuration Files UIMA Version 2.3.1

FeatureObjectMatcher XML

» windowFlags - more precise criteriafor search window; the value if this attributeisa
bitmask with a combination of the following values:

a 1- FA startsto theleft from the TA and ends to the left from the TA

b. 2 - FA startsto the left from the TA and ends inside of TA boundaries

C. 4- FA dtartsto the left from the TA and ends to the right from the TA

d. 8- FA startsinside of the TA and ends inside of the TA boundaries

e. 16 - FA startsinside of the TA boundaries and ends to the right from the TA
f. 32- FA startsto theright from the TA and ends to the right from the TA

The location of a FA isincluded in the generated output according to optional orientation and
distance attributes. For example, if values of both of these attributes are set to true and the FA isa
first annotation of required type to the left from TA, then the generated feature value will start with
the prefix L1. If the values are set to false, then the feature value's prefix will be X0. Thisalows
generating unique feature names for model building and evaluation for machine learning.

Feat ur eObj ect Mat cher XML is used to specify search rulesin FAM specifications.

The FESL fragment below adds rules to the previous sample to extract a number of cylinders from
engines of cars whose wheels diameter is at least 20.0":

<targetAnnotationMatcher annotationTypeName="EngineAnnotation"
fullPath="CarAnnotation:EngineAnnotation" >

<groupFeatureMatchers>
<featureMatchers featurePath="Size" featureTypeName="java.lang.Float">

<rangeFeatureVaues lowerBoundary="1.8" upperBoundarylnclusive="true"
upperBoundary="3.0"/>

</featureMatchers>

<featureMatchers featurePath="__p0:Color" featureTypeName="java.lang.String">
<enumFeatureV alues caseSensitive="true">

<values>red</values>

<values>green</values>

<values>blue</values>

</enumFeatureV alues>

</featureMatcher>

<groupFeatureMatchers>

</targetAnnotationMatcher>

<featureAnnotationMatcher annotationTypeName="EngineAnnotation"
fullPath="CarAnnotation:EngineAnnotation" windowsizelnside=1 >

UIMA Version 2.3.1 Configuration Files 17

TargetAntotationXML

<groupFeatureMatchers>

<featureMatchers featurePath="__p0:Wheels:toArray:Diameter"
featureTypeName="java.lang.Float" quiet="true" >

<rangeFeatureVaues lowerBoundary="20.0" lowerBoundarylnclusive="true"/>
</featureMatcher>

<featureMatchers featurePath="Cylinders' featureTypeName="java.lang.Float" />
<groupFeatureMatchers>

</featureAnnotationM atcher>

3.2.10. TargetAntotationXML

 Attribute: className[1]: String
« Attribute: enclosingAnnotation[1]: String
» Element targetAnnotationMatcher[1..1]: Partial ObjectMatcherXML

» Element featureAnnotationMatchers[0..*]: FeatureObjectMatcherX ML

| TargetAnnobadioniHL [§] PartisChjactiatcer M
(i) enckasinghnrobation #rirg @ fulteath string
[&] tangestrmceation Matcher [1.1] FartaliigsctMatcner ML - (€] groupFeatureMatchers [(0.*] GroupFeatureHaicheritL
(€] Teaturesnnctationatchers [0, FeatweDhjectHatchersbL
I- | FeatweObectMabchery ML

{3) windowsizel eft ink

(T windowsizelnside nt

{5 windowsizeRight nt

fl','l windowsizabrckoed nk

'@‘1 windawFlags rik

{3) arlentation moolean

(@ disanoe [mocdean

Thisisaroot specification for a class (group) of annotations of all extracted instances, which are
assigned the same label (className) in the final output. The label can be aliteral string or afeature
path in curly brackets or a combination of thetwo (i.e. SomeText _{ __p0: SomePr opert y}).

If using afeature path in aclass name label it isrequired to use the parent tag notation. In such

a case the parent tag refers to the TA specified by thet ar get Annot at i onMat cher element.
Annotations that belong to the group are searched within a span of encl osi ngAnnot ati on
according to the specification given in thet ar get Annot ati onVat cher (TAM) and

features from matched annotations are extracted according to specification givenin

f eat ur eAnnot at i onMat cher s (FAM). In general, the annotation that features are extracted
from could be different from annotations that are matched during the search Thisis useful when
extracting features for machine learning model building and evaluation where features are selected
from annotations that could be located in a specific location relatively to the annotation that satisfy
a search criteria. For instance, POS tags of 5 words to the left and right from a specific word. Only
if an annotation is successfully evaluated (matched) by a TAM further feature extraction is allowed
and rules specified by corresponding FAMs are executed.

18

Configuration Files UIMA Version 2.3.1

Configuration file sample

3.3. Configuration file sample
3.3.1. Task definition

The sample configuration file below has been created for extracting featuresin order to build
models for a machine learning application. The type system for this sample defines several UIMA
annotation types:

* org.apache.uima.tools.cfe.sample.Sentence - type that marks a sentence

« org.apache.uima.tools.cfe.sample. Token - type that marks a token with features:
pennTag: String - POS tag of atoken

« org.apache.uima.tools.cfe.sample.NamedEntity - named entity type with features:
Code: String - specific code assigned to a named entity
SemanticClass: String - semantic class of a named entity

Tokens. FSArray - array of org.apache.uimatools.cfe.sample.Token annotations, ordered by their
offset, that are included in the named entity

The classification task is defined as follows:

a. classify first token of each named entities that has semantic class Car Maker with aclass
label that is a composite of the string CvBegi n and a value of the Code attribute that named
entity

b. classify all other tokens of named entities of a semantic classCar Maker with aclasslabel
that is a composite of the string CM nsi de and avalue of the Code property of that named
entity

c. classify al other tokens with aclasslabel Ot her _Token

To build amodel for machine learning it is required to extract features from surrounding tokens for
all classeslisted above. In particular the following features are required to be extracted:

» asgtring literal of the token to which the class|label isassigned (cl ass t oken)

» astring literal of each token that islocated with in awindow of 5 tokensfromthecl ass
t oken with the exception of prepositions (POS tag is IN), conjunctions (CC), delimiters
(DT), punctuation (POS tag is not defined - null) and numbers (CD)

« al extracted features have to be unique with their position information relative to the
location of thecl ass t oken.

3.3.2. Implementation

Line 1 - astandard XML declaration that defines the XML version of the document and its
encoding

Line 2, 87 - FESL root element that references the schema and defines global variables, such as
nullVVauelmage (see Null values)

Line 3-32 - rules for extracting features for first tokens of named entities.

UIMA Version 2.3.1 Configuration Files 19

Implementation

Line 3 - extracted features for those tokens are assigned a composite label that includes prefix
CMBegi n_ pl savalue of a Code attribute of the first element of the TA's path. The search for FA
is going to be performed within boundaries of enclosing org.apache.uima.tools.cfe.sample.Sentence
annotation

Line4-12 - TAM that defines rules for identifying the fist TA

Line 4 - defines TA's type (org.apache.uima.tools.cfe.sample. Token) and afull path to it
(org.apache.uima.tools.cfe.sample.NamedEntity: Tokens:toArray[0]). According to this path notion,
the CFE will:

» search for annotations of type org.apache.uima.tools.cfe.sample.NamedEntity

» for annotations that were found it accesses the value of their attribute Tokens and if the value
is not null, the method toArray is called to convert the value to an array

« if the resulted array is not empty, itsfirst element will be considered to bea TA
Line 5-11 - defines rules for matching a group of featuresfor TA
Line 6-10 - defines rules for matching a feature for this group

Line 6 - defines that the feature value is of the type java.lang.String and has the feature the path
__p0:SemanticClass, which trandates to avalue of the attribute SemanticClass of the first element
of the TA's path (org.apache.uima.tools.cfe.sample.NamedEntity)

Line 7-9 - defines an explicit list of values that the feature value should bein
Line 8 - definesthe value Car Maker asthe only possible value for the feature
Line 13-17 - FAM that defines rules for identifying first FA and its feature extraction

Line 13 - defines FA's type to be org.apache.uima.tools.cfe.sample.Token; the attribute
windowsizelnside with the value 1 tells CFE to extract features from TA itself (TA=FA) and
setting orientation and distance attributes to true tells CFE to include position information into the
generated feature value

Line 14-16 - defines rules for matching a group of features for the first FA.

Line 15 - defines rules for matching the only feature for this group of the type java.lang.String
and with feature path coveredText that eventually will be translated by CFE to a method call of
a org.apache.uima.tools.cfe.sample. Token annotation object; according to this specification the
feature value will be unconditionally extracted

Line 18-31 - FAM that defines rules for identifying second type of FA and its feature extraction

Line 18 - defines FA's type to be org.apache.uima.tools.cfe.sample.Token; the attributes
windowsizeleft and windowsizeRight with the values 5 tell CFE to extract features from 5 nearest
annotations of thistype to the left and to the right from TA and having orientation and distance
attributes set to true tells CFE to include position information into the generated feature value.

Line 19-30 - defines rules for matching a group of features for the second FA.

Line 20 - defines rules for matching the first feature of the group to be of the type java.lang.String
and with the feature path coveredText that eventually will be translated by CFE to a method call
of aorg.apache.uima.tools.cfe.sample. Token annotation object; according to this specification the
feature value will be unconditionally extracted

20

Configuration Files UIMA Version 2.3.1

Implementation

Line 21-29 - define rules for matching the second feature of the group

Line 21 - defines rules for matching the second feature of the group to be of the type
javalang.String and with the feature path pennTag that eventually will be translated by CFE

to get PennTag method call of a org.apache.uima.tools.cfe.sample. Token annotation object;
according to this specification the feature will be evaluated against enumFeatureV alues and, as the
exclude attribute is set to true:

* if the evaluation is successful, the feature matcher will cause the parent group to be
unmatched and since it is the only group in the FAM, no output for this FA will be produced

« if the evaluation is unsuccessful, this feature matcher will not affect matching status
of the group, so the output for FA will be generated as the first matcher of the group
unconditionally produces output

Asthe quiet attribute is set to true, the feature value extracted by the second matcher will not be
added to the generated for this FA output

Line 22-28 - defines an explicit list of values that the value of the second feature should be in

Line 23-27 - definesvalues | N, CC, DT, CD, nul | as possible values for the second feature; if

the feature value is equal to one of these values, evaluation of the enclosing feature matcher is
successful; if the feature value is null it will be converted to the string defined by nullVVauelmage
(nul | assetinline 2 of thissample) and asnul | isone of thelist's elements, it will be
successfully evaluated.

Line 34-63 - rules for extracting features for all tokens of named entities except the first. These
rules are the same as the rules defined for first tokens of named entities (lines 3-32) with the
following exceptions:

Line 34 - defines that TAs matched by these rules will be assigned a composite label that includes
prefix CM nsi de_ plusavalue of the Code attribute of afirst element of the TA's path

Line 35 - sets the fullPath attribute to

org.apache.uima.tools.cfe.sample.NamedEntity: Tokens:toArray that can be translated as any
token of a naned entity, but because of implicit TA exclusion , the TAsthat were matched
for first tokens of named entities by the rules for previous TAM are not included into the set of TAs
that will be evaluated by rules for this TAM

Line 65-86 - rules for extracting features for all tokens other than tokens of named entities. These
rules are the same as the rules defined for previous categories with the following exceptions:

Line 65 - defines that TAs matched by the enclosed rules will be assigned the string label
O her _t oken

Line 66 - only defines atype of TAsthat should be processed by the corresponding TAM without
fullPath attribute. Such a notation can betrandated asal | t okens, but because of the implicit
TA exclusion , the TAs, which were matched for tokens of named entities by rules defined by the
previous TAMS, are not included into the set of TAsthat will be evaluated by rulesfor thisTAM.
S0, the actual trandation will beal | t okens ot her than tokens of named entities.
1. <?ml version="1.0" encoding="UTF-8"?>
2. <tns.CFEConfig nullVauelmage="null" xmlIns:tns="http://www.apache.org/
uima/cfe/config" xmlns:xsi="http://www.w3.0rg/2001/X M L Schema-instance
xsi:schemal ocation="http://www.apache.org/uima/cfe/config CFEConfig.xsd ">
3. <tnsitargetAnnotations className="CMBegin_{__p0:Code} "
enclosingAnnotation="org.apache.uima.tools.cfe.sampl e.Sentence" >

UIMA Version 2.3.1 Configuration Files 21

Implementation

14.
15.
16.
17.
18.

19.
20.
21.

22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.

36.
37.

38.
39.
40.
41.
42.
43.

<tns:targetAnnotationMatcher
annotationTypeName="org.apache.uima.tools.cfe.sample. Token"

full Path="org.apache.uima.tool s.cfe.sample.NamedEntity: Tokens:toArray[0]">
<tns.groupFeatureM atchers>

<tns:.featureMatchers featurePath="__p0: SemanticClass’
featureTypeName="java.lang.String">

<tns.enumFeatureV alues>

<tns:values>Car Maker</tns.values>

</tns.enumFeatureV alues>

. </tns:featureM atchers>

. </tns:groupFeatureM atchers>

. </tns:targetAnnotationM atcher>

. <tns:.featureAnnotationM atchers annotationTypeName=

"org.apache.uimatools.cfe.sample. Token" windowsizelnside="1" orientation="true"
distance="true">

<tns.groupFeatureM atchers>

<tns:.featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
</tns.groupFeatureM atchers>

</tns:featureAnnotationM atchers>

<tns:.featureAnnotationM atchers annotationTypeName=
"org.apache.uima.tools.cfe.sample. Token" windowsizel eft="5" windowsizeRight="5"
orientation="true" distance="true">

<tns.groupFeatureM atchers>

<tns:.featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
<tns:.featureMatchers featurePath="pennTag" featureTypeName="java.lang.String"
exclude="true" quiet="true">

<tns.enumFeatureV al ues caseSensitive="true">

<tns:values>IN</tns:.values>

<tns:values>CC</tns.values>

<tns:values>DT</tns.values>

<tns:values>CD</tns.values>

<tns:vaues>null</tns.values>

</tns.enumFeatureV alues>

</tns:featureMatchers>

</tns.groupFeatureM atchers>

< tns.featureAnnotationM atchers>

</tns:targetAnnotations>

<tns:targetAnnotations className="CMInside { p0:Code}"
enclosingAnnotation="org.apache.uima.tools.cfe.sampl e.Sentence" >
<tns:targetAnnotationMatcher
annotationTypeName="org.apache.uima.tools.cfe.sample. Token"
fullPath="org.apache.uima.tool s.cfe.sample.NamedEntity: Tokens:toArray">
<tns:.groupFeatureM atchers>

<tns:.featureMatchers featurePath="__ p0: SemanticClass'
featureTypeName="java.lang.String">

<tns.enumFeatureVaues>

<tns:values>Car Maker</tns.values>

</tns.enumFeatureV alues>

</tns:featureMatchers>

</tns.groupFeatureM atchers>

</tns:targetAnnotationM atcher>

22

Configuration Files UIMA Version 2.3.1

Implementation

44

45.
46.
47.
48.
49.

50.
51.
52.

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63

. <tns:featureAnnotationMatchers
annotationTypeName="org.apache.uima.tools.cfe.sample. Token" windowsizelnside="1"
orientation="true" distance="true">

<tns.groupFeatureM atchers>

<tns:.featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
</tns.groupFeatureM atchers>

</tns:.featureAnnotationMatchers>

<tns:featureAnnotationMatchers
annotationTypeName="org.apache.uima.tools.cfe.sample.Token" windowsizel eft="5"
windowsizeRight="5" orientation="true" distance="true">

<tns.groupFeatureM atchers>

<tns:featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>
<tns:.featureMatchers featurePath="pennTag" featureTypeName="java.lang.String"
exclude="true" quiet="true">

<tns.enumFeatureV alues caseSensitive="true">

<tns:values>IN</tns.values>

<tns:values>CC</tns.values>

<tns:values>DT</tns.values>

<tns.values>CD</tns:values>

<tns:values>null</tns.values>

</tns.enumFeatureV alues>

</tns:featureMatchers>

</tns.groupFeatureM atchers>

</tns:featureAnnotationM atchers>

. </tns:targetAnnotations>

64.

65

66

67

68.
69.
70.
71.
72.

73.
74.
75.

76.
77.
78.
79.
80.
81.
82.

83
84

. <tns:targetAnnotations className="0Other_token"
enclosingAnnotation="org.apache.uima.tools.cfe.sampl e.Sentence" >

. <tns:targetAnnotationMatcher
annotationTypeName="org.apache.uima.tools.cfe.sample.Token"/>

. <tns:featureAnnotationMatchers

annotationTypeName="org.apache.uima.tools.cfe.sample. Token" windowsizelnside="1"

orientation="true" distance="true">

<tns.groupFeatureM atchers>

<tns:.featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>

</tns.groupFeatureM atchers>

</tns:.featureAnnotationMatchers>

<tns:featureAnnotationMatchers

annotationTypeName="org.apache.uima.tools.cfe.sample. Token" windowsi zel eft="c"

windowsizeRight="5" orientation="true" distance="true">

<tns.groupFeatureM atchers>

<tns:featureMatchers featurePath="coveredText" featureTypeName="java.lang.String"/>

<tns:.featureMatchers featurePath="pennTag" featureTypeName="java.lang.String"

exclude="true" quiet="true">

<tns.enumFeatureV alues caseSensitive="true">

<tns:values>IN</tns.values>

<tns:values>CC</tns.values>

<tns:values>DT</tns.values>

<tns:values>CD</tns.values>

<tns:values>null</tns.values>

</tns.enumFeatureV alues>

. </tns:featureMatchers>

. </tns.groupFeatureM atchers>

UIMA Version 2.3.1 Configuration Files

23

Implementation

85. </tns:.featureAnnotationMatchers>
86. </tns:targetAnnotations>
87. </tns.CFEConfig>

24

Configuration Files

UIMA Version 2.3.1

Chapter 4. Using CFE for evaluation

Comparison of results produced by a pipeline of UIMA annotatorsto agol d st andar d or results
of two different NLP systemsis afrequent task. With CFE this task can be automated.

The paper "CFE a system for testing, evaluation and machine learning of UIMA based
applications' by Sominsky, Coden and Tanenblatt describes details of the evaluation process.

Using CFE for evaluation 25

	CFE User Guide
	Table of Contents
	Chapter 1. Overview
	1.1. Motivation
	1.2. Approaches to feature extraction
	1.2.1. Custom CAS Consumers
	1.2.2. CFE approach

	1.3. CFE Basics

	Chapter 2. Components
	2.1. FESL XSD
	2.2. Source Code
	2.3. Descriptors
	2.4. Type Dependencies

	Chapter 3. Configuration Files
	3.1. Common notations and tags
	3.1.1. Feature path
	3.1.2. Full path and partial path
	3.1.3. TAM and FAM
	3.1.4. Arrays
	3.1.5. Parent tag
	3.1.6. Null values
	3.1.7. Implicit TA exclusion

	3.2. FESL Elements
	3.2.1. BitsetFeatureValuesXML
	3.2.2. EnumFeatureValuesXML
	3.2.3. ObjectPathFeatureValuesXML
	3.2.4. PatternFeatureValuesXML
	3.2.5. RangeFeatureValuesXML
	3.2.6. SingleFeatureMatcherXML
	3.2.7. GroupFeatureMatcherXML
	3.2.8. PartialObjectMatcherXML
	3.2.9. FeatureObjectMatcherXML
	3.2.10. TargetAntotationXML

	3.3. Configuration file sample
	3.3.1. Task definition
	3.3.2. Implementation

	Chapter 4. Using CFE for evaluation

